Journal of Semiconductors, Volume. 42, Issue 2, 023101(2021)

Mobility enhancement techniques for Ge and GeSn MOSFETs

Ran Cheng1, Zhuo Chen1, Sicong Yuan1, Mitsuru Takenaka3, Shinichi Takagi3, Genquan Han2, and Rui Zhang1
Author Affiliations
  • 1School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310058, China
  • 2State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
  • 3School of Engineering, Tokyo University, Yayoi 2-11-16, Tokyo 113-8656, Japan
  • show less
    References(47)

    [1] K Kuhn. Considerations for ultimate CMOS scaling. IEEE Trans Electron Devices, 59, 1813(2012).

    [2] C Auth, A Aliyarukunju, M Asoro et al. A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. IEDM Tech Dig, 29.1(2017).

    [3] S Narasimha, B Jagannathan, A Ogino et al. A 7 nm CMOS technology platform for mobile and high performance compute application. IEDM Tech Dig, 29.5(2017).

    [4]

    [5] K Rim, J Welser, J L Hoyt et al. Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs. IEDM Tech Dig, 517(1995).

    [6] S Takagi, J L Hoyt, J J Welser et al. Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field-effect transistors. J Appl Phys, 80, 1567(1996).

    [7] S Takagi, T Mizuno, T Tezuka et al. Channel structure design, fabrication and carrier transport properties of strained-Si/SiGe-on-insulator (strained-SOI) MOSFETs. IEDM Tech Dig, 57(2003).

    [8] H Shang, M M Frank, E P Gusev et al. Germanium channel MOSFETs: Opportunities and challenges. IBM J Res Dev, 50, 377(2006).

    [9] K C Saraswat, C O Chui, T Krishnamohan et al. Ge based high performance nanoscale MOSFETs. Microelectron Eng, 80, 15(2005).

    [10] S Gupta, R Chen, B Magyari-Kope et al. GeSn technology: Extending the Ge electronics roadmap. IEEE Tech Dig, 16.6(2011).

    [11] X Gong, G Q Han, F Bai et al. Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 oC Si2H6 passivation. IEEE Electron Device Lett, 34, 339(2013).

    [12] R R Lieten, T Maeda, W Jevasuwan et al. Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy. Appl Phys Exp, 6, 101301(2013).

    [13] R Xie, T H Phung, W He et al. High mobility high-k/Ge pMOSFETs with 1 nm EOT – New concept on interface engineering and interface characterization. IEDM Tech Dig, 393(2008).

    [14] J Mitard, C Shea, B DeJaeger et al. Impact of EOT scaling down to 0.85 nm on 70 nm Ge-pFETs technology with STI. VLSI Symp Tech Dig, 82(2009).

    [15] Y Kamata, K Ikeda, Y Kamimuta et al. High-k/Ge p- & n-MISFETs with strontium germanide interlayer for EOT scalable CMIS application. VLSI Symp Tech Dig, 211(2009).

    [16] S Gupta, B Vincent, B Yang et al. Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method. IEDM Tech Dig, 16.2(2012).

    [17] L Liu, R R Liang, J Wang et al. Hole mobility enhancement of GeSn/Ge pMOSFETs with an interlayer formed by Sn-assisted oxynitridation. ECS Solid State Lett, 3, Q76(2014).

    [18] T Haffner, M A Mahjoub, S Labau et al. Improvement of the electrical performance of Au/Ti/HfO2/Ge0.9Sn0.1 p-MOS capacitors by using interfacial layers. Appl Phys Lett, 115, 171601(2019).

    [19] Y Nakakita, R Nakane, T Sasada et al. Interface-controlled self-align source/drain Ge p-channel metal-oxide-semiconductor field-effect transistors fabricated using thermally oxidized GeO2 interfacial layers. Jpn J Appl Phys, 50, 010109(2011).

    [20] K Morii, T Iwasaki, R Nakane et al. High performance GeO2/Ge nMOSFETs with source/drain junctions formed by gas phase doping. IEEE Electron Device Lett, 31, 1092(2010).

    [21] C H Lee, T Nishimura, T Tabata et al. Ge MOSFETs performance: Impact of Ge interface passivation. IEDM Tech Dig, 416(2010).

    [22] R Zhang, T Iwasaki, N Taoka et al. Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation. Appl Phys Lett, 98, 112902(2011).

    [23] R Zhang, T Iwasaki, N Taoka et al. Impact of GeOx interfacial layer thickness on Al2O3/Ge MOS interface properties. Microelectron Eng, 88, 1533(2011).

    [24] R Zhang, T Iwasaki, N Taoka et al. High-mobility Ge pMOSFET with 1-nm-thick EOT Al2O3/GeOx/Ge gate stack fabricated by plasma post oxidation. IEEE Trans Electron Devices, 59, 335(2012).

    [25] R Zhang, P C Huang, J C Lin et al. High-mobility Ge p- and n-MOSFET with 0.7-nm EOT using HfO2/Al2O3/GeOx/Ge gate stacks fabricated by plasma postoxidation. IEEE Trans Electron Devices, 60, 927(2013).

    [26] N Taoka, K Ikeda, Y Yamashita et al. Quantitative evaluation of interface trap density in Ge-MIS interfaces. Ext Abst SSDM, 396(2006).

    [27] H Matsubara, H Kumagai, S Sugahara et al. Evaluation of SiO2/GeO2/Ge MIS interface properties by low temperature conductance method. Ext Abst SSDM, 18(2007).

    [28] K Martens, B D Jaeger, R Bonzom et al. New interface state density extraction method applicable to peaked and high-density distributions for Ge MOSFET development. IEEE Electron Device Lett, 27, 405(2006).

    [29] J R Brews. Rapid interface parameterization using a single MOS conductance curve. Solid-State Electron, 26, 711(1983).

    [30] G S Smith, P B Isaacs. The crystal structure of quartz-like GeO2. Acta Cryst, 17, 842(1964).

    [31] S Van Elshocht, M Caymax, T Conard et al. Effect of hafnium germinate formation on the interface of HfO2/germanium metal oxide semiconductor devices. Appl Phys Lett, 88, 141904(2006).

    [32] M Houssa, G Pourtois, M Caymax et al. First-principles study of the structural and electronic properties of (100) Ge/Ge(M)O2 interfaces (M = Al, La, or Hf). Appl Phys Lett, 92, 242101(2008).

    [33] S Migita, Y Watanabe, H Ota et al. Design and demonstration of very high-k (k similar to 50) HfO2 for ultra-scaled Si CMOS. VLSI Symp Tech Dig, 119(2008).

    [34] P Tsipas, S N Volkos, A Sotiropoulos et al. Germanium-induced stabilization of a very high-k zirconia phase in ZrO2/GeO2 gate stacks. Appl Phys Lett, 93, 082904(2008).

    [35] D Tsoutsou, G Apostolopoulos, S Galata et al. Stabilization of a very high-k tetragonal ZrO2 phase by direct doping with germanium. Microelectron Eng, 86, 1626(2009).

    [36] Y Oshima, M Shandalov, Y Sun et al. Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density. Appl Phys Lett, 94, 183102(2009).

    [37] C H Fu, K S Chang-Liao, L J Liu et al. An ultralow EOT Ge MOS device with tetragonal HfO2 and high quality HfxGeyO interfacial layer. IEEE Trans Electron Devices, 61, 2662(2014).

    [38] G Han, S Su, C Zhan, Q Zhou et al. High-mobility germanium-tin (GeSn) p-channel MOSFETs featuring metallic source/drain and sub-370 oC process modules. IEDM Tech Dig, 402(2011).

    [39] S Gupta, Y C Huang, Y Kim et al. Hole enhancement in compressively strained Ge0.93Sn0.07 pMOSFETs. IEEE Electron Device Lett, 34, 58(2013).

    [40] M Liu, G Han, Y Liu et al. Undoped Ge0.92Sn0.08 quantum well pMOSFETs on (001), (011) and (111) substrates with in situ Si2H6 passivation: High hole mobility and dependence of performance on orientation. VLSI Symp Tech Dig, 100(2014).

    [41] T Mizuno, S Takagi, N Sugiyama et al. Electron and hole mobility enhancement in strained-Si MOSFET's on SiGe-on-insulator substrates fabricated by SIMOX technology. IEEE Electron Device Lett, 21, 230(2000).

    [42] S E Thompson, M Armstrong, C Auth et al. A 90-nm logic technology featuring strained-silicon. IEEE Trans Electron Device, 51, 1790(2004).

    [43] M L Lee, E A Fitzgerald, M T Bulsara et al. Strained Si, and Ge channels for high-mobility metal –oxide –semiconductor field-effect transistors. J Appl Phys, 97, 011101(2005).

    [44] S Nakaharai, T Tezuka, N Sugiyama et al. Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique. Appl Phys Phys, 83, 3516(2003).

    [45] T Krishnamohan, Z Krivokapic, K Uchida et al. High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: Experiments. IEEE Trans Electron Devices, 53, 990(2006).

    [46] S Gupta, B Magyari-Kope, Y Nishi et al. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J Appl Phys, 113, 073707(2014).

    [47] Y Yang, K L Low, W Wang et al. Germanium-tin n-channel tunneling field-effect transistor: Device physics and simulation study. J Appl Phys, 113, 194507(2013).

    Tools

    Get Citation

    Copy Citation Text

    Ran Cheng, Zhuo Chen, Sicong Yuan, Mitsuru Takenaka, Shinichi Takagi, Genquan Han, Rui Zhang. Mobility enhancement techniques for Ge and GeSn MOSFETs[J]. Journal of Semiconductors, 2021, 42(2): 023101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 22, 2020

    Accepted: --

    Published Online: Jun. 9, 2021

    The Author Email:

    DOI:10.1088/1674-4926/42/2/023101

    Topics