Journal of Semiconductors, Volume. 42, Issue 2, 023101(2021)
Mobility enhancement techniques for Ge and GeSn MOSFETs
Fig. 1. (Color online) The fabrication process of the high-
Fig. 2. (Color online) The AR-XPS spectra taken from an 1-nm-thick Al2O3/Ge structure with 650 W PPO for 10 s.
Fig. 3. (Color online) (a) The
Fig. 4. (Color online) The
Fig. 5. (Color online) (a) The
Fig. 6. The cross section TEM image of an HfO2 (2.2 nm)/Al2O3 (0.2 nm)/Ge structure after 15 s’ PPO using 500 W plasma.
Fig. 7. (Color online) The
Fig. 8. (Color online) The schematic illusion of the ozone post oxidation process.
Fig. 9. Cross section TEM of an HfO2 (2 nm)/Al2O3 (0.3 nm)/Ge structure after OPO for 60 s at 300 °C.
Fig. 10. (Color online) The EOT of the OPO HfO2/Al2O3/GeO
Fig. 11. (Color online) The
Fig. 12. (Color online) The oxide thickness of the PPO and OPO gate stacks at side wall and top regions of a 3D structured Ge channel.
Fig. 13. (Color online) The fabrication process of the Ge MOSFETs with OPO HfO2/Al2O3/GeO
Fig. 14. (Color online) The
Fig. 15. (Color online) The hole mobility in HfO2/Al2O3/GeO
Fig. 16. (Color online) The mechanism of suppressed carrier scattering in the Si passivated GeSn channel, compared with the direct oxide/GeSn channel.
Fig. 17. The cross section TEM image of a GeSn MOS structure having the Si passivation.
Fig. 18. (Color online) (a)
Fig. 19. (Color online) The hole mobility in the Si passivated GeSn QW pMOSFETs with different channel orientations of (100), (110) and (111).
Fig. 20. (Color online) The comparison of (a)
Fig. 21. (Color online) The equienergy contours of heavy hole sub-band for GeSn pMOSFETs with different Sn contents of 2.7%, 4.0% and 7.5%, at a
Get Citation
Copy Citation Text
Ran Cheng, Zhuo Chen, Sicong Yuan, Mitsuru Takenaka, Shinichi Takagi, Genquan Han, Rui Zhang. Mobility enhancement techniques for Ge and GeSn MOSFETs[J]. Journal of Semiconductors, 2021, 42(2): 023101
Category: Reviews
Received: Sep. 22, 2020
Accepted: --
Published Online: Jun. 9, 2021
The Author Email: