Journal of Synthetic Crystals, Volume. 54, Issue 2, 263(2025)

Research Progress of Ultra-Wide Bandgap β-Ga2O3 Power Devices on Novel Structures and Electro-Thermal Characteristics

WEI Yuxi1, MA Xinyu1, JIANG Zejun1, WEI Jie1, and LUO Xiaorong1,2、*
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2College of Microelectronics, Chengdu University of Information Technology, Chengdu 610225, China
  • show less
    References(24)

    [1] [1] MILLN J, GODIGNON P, PERPI X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163.

    [2] [2] TRIVEDI M, SHENAI K. Performance evaluation of high-power wide band-gap semiconductor rectifiers[J]. Journal of Applied Physics, 1999, 85(9): 6889-6897.

    [3] [3] ZHONG Y Z, ZHANG J W, WU S, et al. A review on the GaN-on-Si power electronic devices[J]. Fundamental Research, 2022, 2(3): 462-475.

    [4] [4] SHE X, HUANG A Q, LUCA , et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.

    [5] [5] ZHANG H P, YUAN L, TANG X Y, et al. Progress of ultra-wide bandgap Ga2O3 semiconductor materials in power MOSFETs[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5157-5179.

    [6] [6] WONG M H, HIGASHIWAKI M. Vertical -Ga2O3 power transistors: a review[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3925-3937.

    [7] [7] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301.

    [8] [8] MASTRO M A, KURAMATA A, CALKINS J, et al. Perspective—opportunities and future directions for Ga2O3[J]. ECS Journal of Solid State Science and Technology, 2017, 6(5): P356-P359.

    [9] [9] GHOSH K, SINGISETTI U. Impact ionization in -Ga2O3[J]. Journal of Applied Physics, 2018, 124(8): 085707.

    [10] [10] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal -Ga2O3 (010) substrates[J]. IEEE Electron Device Letters, 2013, 34(4): 493-495.

    [11] [11] PEARTON S J, REN F, TADJER M, et al. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS[J]. Journal of Applied Physics, 2018, 124(22): 220901.

    [12] [12] HIGASHIWAKI M, JESSEN G H. Guest Editorial: the dawn of gallium oxide microelectronics[J]. Applied Physics Letters, 2018, 112(6): 060401.

    [13] [13] LIN C H, YUDA Y, WONG M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation[J]. IEEE Electron Device Letters, 2019, 40(9): 1487-1490.

    [14] [14] KONISHI K, GOTO K, MURAKAMI H, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes[J]. Applied Physics Letters, 2017, 110(10): 103506.

    [15] [15] WANG B Y, XIAO M, SPENCER J, et al. 2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension[J]. IEEE Electron Device Letters, 2023, 44(2): 221-224.

    [16] [16] LV Y J, MO J H, SONG X B, et al. Influence of gate recess on the electronic characteristics of -Ga2O3 MOSFETs[J]. Superlattices and Microstructures, 2018, 117: 132-136.

    [17] [17] DONG P F, ZHANG J C, YAN Q L, et al. 6 kV/3.4 m·cm2 vertical -Ga2O3 Schottky barrier diode with BV2/Ron, sp performance exceeding 1-D unipolar limit of GaN and SiC[J]. IEEE Electron Device Letters, 2022, 43(5): 765-768.

    [18] [18] WEI Y X, LUO X R, WANG Y G, et al. Experimental study on static and dynamic characteristics of Ga2O3 Schottky barrier diodes with compound termination[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 10976-10980.

    [19] [19] WEI J, WEI Y X, LU J, et al. Experimental study on electrical characteristics of large-size vertical -Ga2O3 junction barrier Schottky diodes[C]//2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD). May 22-25, 2022, Vancouver, BC, Canada. IEEE, 2022: 97-100.

    [20] [20] WEI Y X, LUO X R, WANG Y G, et al. 600 V/7 A large-size RESURF -Ga2O3 Schottky barrier diode with high-temperature storage test[J]. IEEE Transactions on Electron Devices, 2024, 71(2): 1320-1324.

    [21] [21] JIANG Z L, WEI Y X, LV Y J, et al. Experimental investigation on threshold voltage instability for -Ga2O3 MOSFET under electrical and thermal stress[J]. IEEE Transactions on Electron Devices, 2022, 69(9): 5048-5054.

    [22] [22] JIANG Z L, WEI J, LV Y J, et al. Nonuniform mechanism for positive and negative bias stress instability in -Ga2O3 MOSFET[J]. IEEE Transactions on Electron Devices, 2022, 69(10): 5509-5515.

    [23] [23] JIANG Z L, DENG H R, ZHOU X Z, et al. Realizing high stability of threshold voltage in NiO/-Ga2O3 heterojunction-gate FET operating up to 200 ℃ by electrothermal aging technology[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1598-1605.

    [24] [24] JIANG Z L, LI X N, ZHOU X Z, et al. Experimental investigation on the instability for NiO/-Ga2O3 heterojunction-gate FETs under negative bias stress[J]. Journal of Semiconductors, 2023, 44(7): 072803.

    Tools

    Get Citation

    Copy Citation Text

    WEI Yuxi, MA Xinyu, JIANG Zejun, WEI Jie, LUO Xiaorong. Research Progress of Ultra-Wide Bandgap β-Ga2O3 Power Devices on Novel Structures and Electro-Thermal Characteristics[J]. Journal of Synthetic Crystals, 2025, 54(2): 263

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 31, 2024

    Accepted: Mar. 31, 2025

    Published Online: Mar. 31, 2025

    The Author Email: LUO Xiaorong (xrluo@uestc.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0265

    Topics