Journal of Synthetic Crystals, Volume. 54, Issue 5, 809(2025)

Symmetric Oxide Confinement Structure Improves 795 nm VCSEL Single-Mode Power

Xiuyang JIA... Zhigang JIA*, Hailiang DONG, Xiaodong CHEN, Maolin GAO and Bingshe XU |Show fewer author(s)
Author Affiliations
  • Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan030024, China
  • show less
    References(36)

    [1] KITCHING J, KNAPPE S, LIEW L et al. Microfabricated atomic clocks, 1-7(2005).

    [2] SERKLAND D K, GEIB K M, PEAKE G M et al. VCSELs for atomic sensors, 648406(2007).

    [3] MALEEV N A, BLOKHIN S A, BOBROV M A et al. Laser source for a compact nuclear magnetic resonance gyroscope. Gyroscopy and Navigation, 9, 177-182(2018).

    [4] JUNG C, JÄGER R, GRABHERR M et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes. Electronics Letters, 33, 1790(1997).

    [5] ZHANG J, NING Y Q, ZENG Y G et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks. Laser Physics Letters, 10(2013).

    [6] SUN Y R, DONG J R, ZHAO Y M et al. The fabrication and lasing characteristics of oxide-confined 795 nm VCSELs with close and open isolation trenches. Optical and Quantum Electronics, 49, 361(2017).

    [7] ZHOU Y L, JIA Y C, ZHANG X et al. Large-aperture single-mode 795 nm VCSEL for chip-scale nuclear magnetic resonance gyroscope with an output power of 4.1 mW at 80 ℃. Optics Express, 30, 8991-8999(2022).

    [8] XUN M, PAN G Z, ZHAO Z Z et al. High single fundamental-mode output power from 795 nm VCSELs with a long monolithic cavity. IEEE Electron Device Letters, 44, 1144-1147(2023).

    [9] HUFFAKER D L, DEPPE D G, KUMAR K et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers. Applied Physics Letters, 65, 97-99(1994).

    [10] MOSER P, LOTT J A, LARISCH G et al. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs. Journal of Lightwave Technology, 33, 825-831(2015).

    [11] SHARIZAL A M, LEISHER P O, CHOQUETTE K D et al. Effect of oxide aperture on the performance of 850nm vertical-cavity surface-emitting lasers. Optik, 120, 121-126(2009).

    [12] NIE Y W, LI W, LYU J G et al. Oxidation-limited 795 nm vertical cavity surface emission laser. Chinese Journal of Lasers, 51(2024).

    [13] ALMUNEAU G, BOSSUYT R, COLLIÈRE P et al. Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs. Semiconductor Science and Technology, 23, 105021(2008).

    [14] FENG Y, LIU G J, YAN C L et al. A study on the law of oxidation rate in GaAs-based VCSELs. Optik, 125, 5124-5127(2014).

    [15] CHEN L, LUO Y, FENG Y et al. Temperature dependence of wet oxidation process based on VCSEL. Chinese Journal of Lasers, 47(2020).

    [16] GUSTAVSSON J S, WESTBERGH P et al. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs. IEEE Photonics Technology Letters, 21, 1840-1842(2009).

    [17] HAGLUND E, WESTBERGH P, GUSTAVSSON J S et al. High-speed VCSELs with strong confinement of optical fields and carriers. Journal of Lightwave Technology, 34, 269-277(2016).

    [18] LIU M, WANG C Y, FENG M et al. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs, 1-3(2016).

    [19] CHENG C H, SHEN C C, KAO H Y et al. 850/940-nm VCSEL for optical communication and 3D sensing. Opto-Electronic Advances, 1, 180005(2018).

    [20] SAMAL N, JOHNSON S R, DING D et al. High-power single-mode vertical-cavity surface-emitting lasers. Applied Physics Letters, 87, 161108(2005).

    [21] CHANG K S, SONG Y M, LEE Y T. Stable single-mode operation of VCSELs with a mode selective aperture. Applied Physics B, 89, 231-234(2007).

    [22] YAZDANYPOOR M, GHOLAMI A. Optimizing optical output power of single-mode VCSELs using multiple oxide layers. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1701708(2013).

    [23] YAZDANYPOOR M, EMAMI F. High power single mode multi-oxide layer VCSEL with optimized thicknesses and aperture sizes of oxide layers. Journal of the Optical Society of Korea, 18, 167-173(2014).

    [24] LI H J, ZHONG J C, HAO Y Q et al. The influence of wet oxidation for VCSELs' charactors. Journal of China Academy of Electronics and Information Technology, 1, 369-372(2006).

    [25] CHUANG S L. Physics of optoelectronic devices, 28-50(2005).

    [26] PASSARO V M N, MAGNO F, DE LEONARDIS F. Optimization of Bragg reflectors in AlGaAs/GaAs VCSELs. Laser Physics Letters, 2, 239-246(2005).

    [27] HADLEY G R, LEAR K L, WARREN M E et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 32, 607-616(1996).

    [28] PIPREK J. Semiconductor optoelectronic devices: introduction to physics and simulation(2003).

    [29] WACHUTKA G K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9, 1141-1149(1990).

    [30] GAO Y B, ZHANG Y H, CHU C S et al. Effectively confining the lateral current within the aperture for GaN based VCSELs by using a reverse biased NP junction. IEEE Journal of Quantum Electronics, 56, 2400507(2020).

    [31] BOND A E, DAPKUS P D, O’BRIEN J D. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters, 10, 1362-1364(1998).

    [32] PAN G Z, XUN M, ZHAO Z Z et al. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser. IEEE Electron Device Letters, 42, 1342-1345(2021).

    [33] ZHUANG S L. Photonic device physics, 30-31(2013).

    [34] WANG G, YANG Q. Optimization of the operating point of a vertical-cavity surface-emitting laser. IEEE Journal of Quantum Electronics, 32, 1441-1449(1995).

    [35] XIAO Y, WANG J, LIU H et al. Multi-junction cascaded vertical-cavity surface-emitting laser with a high power conversion efficiency of 74%. Light, Science & Applications, 13, 60(2024).

    [36] YANG H, GUO X, GUAN B L et al. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 57, 2959-2965(2008).

    Tools

    Get Citation

    Copy Citation Text

    Xiuyang JIA, Zhigang JIA, Hailiang DONG, Xiaodong CHEN, Maolin GAO, Bingshe XU. Symmetric Oxide Confinement Structure Improves 795 nm VCSEL Single-Mode Power[J]. Journal of Synthetic Crystals, 2025, 54(5): 809

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 29, 2024

    Accepted: --

    Published Online: Jul. 2, 2025

    The Author Email: Zhigang JIA (jiazhigang@tyut.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0303

    Topics