Chinese Journal of Lasers, Volume. 47, Issue 5, 0500008(2020)

Solid-State Waveguide Lasers Based on Laser Crystals

Feng Chen* and Ziqi Li
Author Affiliations
  • State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan, Shandong 250100, China
  • show less
    References(151)

    [1] Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications[J]. Laser & Photonics Reviews, 6, 622-640(2012).

    [2] Chen F. Vázquez de Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [3] Tang H, di Franco C, Shi Z Y et al. Experimental quantum fast hitting on hexagonal graphs[J]. Nature Photonics, 12, 754-758(2018).

    [4] Li L Q, Nie W J, Li Z Q et al. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band[J]. Optics Express, 25, 24236-24241(2017).

    [5] Li Z Q, Cheng C, Romero C et al. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing[J]. Optical Materials, 73, 45-49(2017).

    [6] Nie W J, Jia Y C. Vázquez de Aldana J R, et al. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription[J]. Scientific Reports, 6, 22310(2016).

    [7] Tang H, Lin X F, Feng Z et al. 4(5): eaat3174(2018).

    [8] Chen Y, Gao J, Jiao Z Q et al. Mapping twisted light into and out of a photonic chip[J]. Physical Review Letters, 121, 233602(2018).

    [11] laser systems[J]. Grivas C. Optically pumped planar waveguide lasers: part II: gain media, applications. Progress in Quantum Electronics, 45/46, 3-160(2016).

    [13] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [14] Choudhury D. MacDonald J R, Kar A K. Ultrafast laser inscription: perspectives on future integrated applications[J]. Laser & Photonics Reviews, 8, 827-846(2014).

    [15] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [18] Jia Y C, Cheng C. Vázquez de Aldana J R, et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes[J]. Scientific Reports, 4, 5988(2015).

    [20] Chen F. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams[J]. Journal of Applied Physics, 106, 081101(2009).

    [21] Li R, Pang C, Li Z Q et al. Monolithic waveguide laser mode-locked by embedded Ag nanoparticles operating at 1 μm[J]. Nanophotonics, 8, 859-868(2019).

    [22] Geskus D, Aravazhi S, Grivas C et al. Microstructured KY(WO4)2∶Gd 3+, Lu 3+, Yb 3+ channel waveguide laser[J]. Optics Express, 18, 8853-8858(2010).

    [23] Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers[J]. Laser & Photonics Reviews, 5, 368-403(2011).

    [24] Calmano T, Paschke A G, Siebenmorgen J et al. Characterization of an Yb∶YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique[J]. Applied Physics B, 103, 1-4(2011).

    [25] Lancaster D G, Gross S, Ebendorff-Heidepriem H et al. Fifty percent internal slope efficiency femtosecond direct-written Tm 3+∶ZBLAN waveguide laser[J]. Optics Letters, 36, 1587-1589(2011).

    [26] Zhang C, Dong N N, Yang J et al. Channel waveguide lasers in Nd∶GGG crystals fabricated by femtosecond laser inscription[J]. Optics Express, 19, 12503-12508(2011).

    [27] Ams M, Dekker P, Marshall G D et al. Ultrafast laser-written dual-wavelength waveguide laser[J]. Optics Letters, 37, 993-995(2012).

    [28] Bolanos W, Starecki F, Benayad A et al. Tm∶LiYF4 planar waveguide laser at 1.9 μm[J]. Optics Letters, 37, 4032-4034(2012).

    [30] Grivas C, Corbari C, Brambilla G et al. Tunable, continuous-wave Ti∶sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses[J]. Optics Letters, 37, 4630-4632(2012).

    [31] Müller S, Calmano T, Metz P et al. Femtosecond-laser-written diode-pumped Pr∶LiYF4 waveguide laser[J]. Optics Letters, 37, 5223-5225(2012).

    [35] Della Valle G, Festa A, Sorbello G et al. Single-mode and high power waveguide lasers fabricated by ion-exchange[J]. Optics Express, 16, 12334-12341(2008).

    [36] Bain F M, Lagatsky A A, Thomson R R et al. Ultrafast laser inscribed Yb∶KGd(WO4)2 and Yb∶KY(WO4)2 channel waveguide lasers[J]. Optics Express, 17, 22417-22422(2009).

    [37] Grivas C, Shepherd D P, Eason R W et al. Room-temperature continuous-wave operation of Ti∶sapphire buried channel-waveguide lasers fabricated via proton implantation[J]. Optics Letters, 31, 3450-3452(2006).

    [38] Osellame R, Chiodo N, Della Valle G et al. Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 277-285(2006).

    [39] Romanyuk Y E, Borca C N, Pollnau M et al. Yb-doped KY(WO4)2 planar waveguide laser[J]. Optics Letters, 31, 53-55(2006).

    [40] Della Valle G, Taccheo S, Osellame R et al. 1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing[J]. Optics Express, 15, 3190-3194(2007).

    [41] Rivier S, Mateos X, Petrov V et al. Tm∶KY(WO4)2 waveguide laser[J]. Optics Express, 15, 5885-5892(2007).

    [42] Flores-Romero E, Vázquez G V, Márquez H et al. Planar waveguide lasers by proton implantation in Nd∶YAG crystals[J]. Optics Express, 12, 2264-2269(2004).

    [43] Unal B, Netti M C, Hassan M A et al. Neodymium-doped tantalum pentoxide waveguide lasers[J]. IEEE Journal of Quantum Electronics, 41, 1565-1573(2005).

    [44] Grant-Jacob J A, Beecher S J, Parsonage T L et al. An 11.5 W Yb∶YAG planar waveguide laser fabricated via pulsed laser deposition[J]. Optical Materials Express, 6, 91-96(2016).

    [45] Tan Y, Rodenas A, Chen F et al. 70% slope efficiency from an ultrafast laser-written Nd∶GdVO4 channel waveguide laser[J]. Optics Express, 18, 24994-24999(2010).

    [46] Nie W J, He R Y, Cheng C et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing[J]. Optics Letters, 41, 2169-2172(2016).

    [47] Liu H L. Vázquez de Aldana J R, Hong M H, et al. Femtosecond laser inscribed Y-branch waveguide in Nd∶YAG crystal: fabrication and continuous-wave lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 227-230(2016).

    [48] Jia Y C, Cheng C. Vázquez de Aldana J R, et al. Three-dimensional waveguide splitters inscribed in Nd∶YAG by femtosecond laser writing: realization and laser emission[J]. Journal of Lightwave Technology, 34, 1328-1332(2016).

    [50] Calmano T, Müller S. Crystalline waveguide lasers in the visible and near-infrared spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 401-413(2015).

    [51] Calmano T, Siebenmorgen J, Reichert F et al. Crystalline Pr∶SrAl12O19 waveguide laser in the visible spectral region[J]. Optics Letters, 36, 4620-4622(2011).

    [53] Starecki F, Bolaños W, Braud A et al. Red and orange Pr 3+∶LiYF4 planar waveguide laser[J]. Optics Letters, 38, 455-457(2013).

    [55] Lancaster D G, Gross S, Ebendorff-Heidepriem H et al. 2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho 3+, Tm 3+∶ZBLAN glass[J]. Optics Letters, 37, 996-998(2012).

    [57] Lancaster D G, Stevens V J, Michaud-Belleau V et al. Holmium-doped 2.1 μm waveguide chip laser with an output power >1 W[J]. Optics Express, 23, 32664-32670(2015).

    [58] McDaniel S, Thorburn F, Lancaster A et al. Operation of Ho∶YAG ultrafast laser inscribed waveguide lasers[J]. Applied Optics, 56, 3251-3256(2017).

    [60] Kifle E, Loiko P, Romero C et al. Femtosecond-laser-written Ho∶KGd(WO4)2 waveguide laser at 2.1 μm[J]. Optics Letters, 44, 1738-1741(2019).

    [63] Jia Y, Dong N, Chen F et al. Continuous wave waveguide lasers in femtosecond laser micromachined ion irradiated Nd∶YAG single crystals[J]. Optical Materials Express, 2, 657-662(2012).

    [65] Jia Y C, Rüter C E, Akhmadaliev S et al. Ridge waveguide lasers in Nd∶YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing[J]. Optical Materials Express, 3, 433-438(2013).

    [66] Yao Y C, Dong N N, Chen F et al. Continuous wave waveguide lasers of swift argon ion irradiated Nd∶YVO4 waveguides[J]. Optics Express, 19, 24252-24257(2011).

    [68] Liu H L. Vázquez de Aldana J R, Aguiló M, et al. Femtosecond laser-written double-cladding waveguides in Nd∶GdVO4 crystal: Raman analysis, guidance, and lasing[J]. Optical Engineering, 53, 097105(2014).

    [71] Liu H L, An Q, Chen F et al. Continuous-wave lasing at 1.06 μm in femtosecond laser written Nd∶KGW waveguides[J]. Optical Materials, 37, 93-96(2014).

    [72] Liu H L, Jia Y C, Chen F et al. Continuous wave laser operation in Nd∶GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses[J]. Optical Materials Express, 3, 278-283(2013).

    [74] Ren Y Y. Vázquez de Aldana J R, Chen F, et al. Channel waveguide lasers in Nd∶LGS crystals[J]. Optics Express, 21, 6503-6508(2013).

    [75] Calmano T, Siebenmorgen J, Paschke A G et al. Diode pumped high power operation of a femtosecond laser inscribed Yb∶YAG waveguide laser [Invited][J]. Optical Materials Express, 1, 428-433(2011).

    [76] Siebenmorgen J, Calmano T, Petermann K et al. Highly efficient Yb∶YAG channel waveguide laser written with a femtosecond-laser[J]. Optics Express, 18, 16035-16041(2010).

    [79] van Dalfsen K, Aravazhi S, Grivas C et al. Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency[J]. Optics Letters, 37, 887-889(2012).

    [82] Ren Y Y, Brown G, Ródenas A et al. Mid-infrared waveguide lasers in rare-earth-doped YAG[J]. Optics Letters, 37, 3339-3341(2012).

    [83] Liu X F, Guo Q B, Qiu J R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics[J]. Advanced Materials, 29, 1605886(2017).

    [84] Yu S L, Wu X Q, Wang Y P et al. 2D materials for optical modulation: challenges and opportunities[J]. Advanced Materials, 29, 1606128(2017).

    [85] Luo Z Q, Wu D D, Xu B et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 8, 1066-1072(2016).

    [86] Zhu X, Chen S, Zhang M et al. TiS2-based saturable absorber for ultrafast fiber lasers[J]. Photonics Research, 6, C44-C48(2018).

    [87] Fang Y R, Ge Y Q, Wang C et al. Mid-infrared photonics using 2D materials: status and challenges[J]. Laser & Photonics Reviews, 14, 1900098(2020).

    [89] Liu Z K, Mu H R, Xiao S et al. Pulsed lasers: pulsed lasers employing solution-processed plasmonic Cu3-xP colloidal nanocrystals[J]. Advanced Materials, 28, 3604-3542(2016).

    [90] Wang G Z, Wang K P, Szydłowska B M et al. Ultrafast nonlinear optical properties of a graphene saturable mirror in the 2 μm wavelength region[J]. Laser & Photonics Reviews, 11, 1770051(2017).

    [91] Jiang X T, Liu S X, Liang W Y et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T=F, O, or OH)[J]. Laser & Photonics Reviews, 12, 1870013(2018).

    [94] Novoselov K S, Mishchenko A, Carvalho A et al. 353(6298): aac9439[J]. van der Waals heterostructures. Science(2016).

    [95] Bae J E, Park T G, Kifle E et al. Carbon nanotube Q-switched Yb∶KLuW surface channel waveguide lasers[J]. Optics Letters, 45, 216-219(2020).

    [96] Ma L N, Tan Y, Wang S X et al. Continuous-wave and Q-switched Yb∶YSGG waveguide laser[J]. Journal of Lightwave Technology, 35, 2642-2645(2017).

    [97] Cheng C, Li Z Q, Dong N N et al. Tin diselenide as a new saturable absorber for generation of laser pulses at 1 μm[J]. Optics Express, 25, 6132-6140(2017).

    [98] Hakobyan S, Wittwer V J, Hasse K et al. Highly efficient Q-switched Yb∶YAG channel waveguide laser with 5.6 W of average output power[J]. Optics Letters, 41, 4715-4718(2016).

    [100] Ma L N, Tan Y, Akhmadaliev S et al. Electrically tunable Nd∶YAG waveguide laser based on graphene[J]. Scientific Reports, 6, 36785(2016).

    [101] Wieschendorf C, Firth J, Silvestri L et al. Compact integrated actively Q-switched waveguide laser[J]. Optics Express, 25, 1692-1701(2017).

    [102] Kim J W, Choi S Y, Bae J E et al. Comparative study of Yb∶KYW planar waveguide lasers Q-switched by direct- and evanescent-field interaction with carbon nanotubes[J]. Optics Express, 27, 1488-1496(2019).

    [104] Kifle E, Loiko P. Vázquez de Aldana J R, et al. Fs-laser-written thulium waveguide lasers Q-switched by graphene and MoS2[J]. Optics Express, 27, 8745-8755(2019).

    [105] Loiko P, Bogusławski J, Serres J M et al. Sb2Te3 thin film for the passive Q-switching of a Tm∶GdVO4 laser[J]. Optical Materials Express, 8, 1723-1732(2018).

    [107] Lin H F, Tang F, Chen W D et al. Diode-pumped tape casting planar waveguide YAG/Nd∶YAG/YAG ceramic laser[J]. Optics Express, 23, 8104-8112(2015).

    [109] Tan Y, Guo Z N, Ma L N et al. Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous[J]. Optics Express, 24, 2858-2866(2016).

    [110] Tan Y, He R Y. MacDonald J, et al. Q-switched Nd∶YAG channel waveguide laser through evanescent field interaction with surface coated graphene[J]. Applied Physics Letters, 105, 101111(2014).

    [111] Liu H L, Cheng C, Romero C et al. Graphene-based Y-branch laser in femtosecond laser written Nd∶YAG waveguides[J]. Optics Express, 23, 9730-9735(2015).

    [112] Cheng C, Liu H L, Shang Z et al. Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing[J]. Optical Materials Express, 6, 367-373(2016).

    [113] Tan Y, Liu X B, He Z L et al. Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications[J]. ACS Photonics, 4, 1531-1538(2017).

    [114] Cheng C, Liu H L, Tan Y et al. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide[J]. Optics Express, 24, 10385-10390(2016).

    [115] Tan Y, Zhang H, Zhao C J et al. Bi2Se3Q-switched Nd∶YAG ceramic waveguide laser[J]. Optics Letters, 40, 637-640(2015).

    [116] Tan Y, Guo Z N, Shang Z et al. Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation[J]. Scientific Reports, 6, 21799(2016).

    [118] Ma L, Tan Y, Ghorbani-Asl M et al. Tailoring the optical properties of atomically-thin WS2 via ion irradiation[J]. Nanoscale, 9, 11027-11034(2017).

    [119] He R Y. Vázquez de Aldana J R, Chen F. Passively Q-switched Nd∶YVO4 waveguide laser using graphene as a saturable absorber[J]. Optical Materials, 46, 414-417(2015).

    [120] Nie W J, Li R, Cheng C et al. Room-temperature subnanosecond waveguide lasers in Nd∶YVO4Q-switched by phase-change VO2: a comparison with 2D materials[J]. Scientific Reports, 7, 46162(2017).

    [121] Pang C, Li R, Zhang Y X et al. Tailoring optical nonlinearities of LiNbO3 crystals by plasmonic silver nanoparticles for broadband saturable absorbers[J]. Optics Express, 26, 31276-31289(2018).

    [122] Jia Y C, He R Y. Vázquez de Aldana J R, et al. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers[J]. Optics Express, 27, 30941-30951(2019).

    [123] Choi S Y, Calmano T, Kim M H et al. Q-switched operation of a femtosecond-laser-inscribed Yb∶YAG channel waveguide laser using carbon nanotubes[J]. Optics Express, 23, 7999-8005(2015).

    [124] Choudhary A, Beecher S J, Dhingra S et al. 456-mW graphene Q-switched Yb∶yttria waveguide laser by evanescent-field interaction[J]. Optics Letters, 40, 1912-1915(2015).

    [125] Ren Y Y, Cheng C, Jia Y C et al. Switchable single-dual-wavelength Yb, Na∶CaF2 waveguide lasers operating in continuous-wave and pulsed regimes[J]. Optical Materials Express, 8, 1633-1641(2018).

    [126] Kifle E, Mateos X, Loiko P et al. Graphene Q-switched Tm∶KY(WO4)2waveguide laser[J]. Laser Physics, 27, 045801(2017).

    [127] Loiko P, Serres J M, Delekta S S et al. Inkjet-printing of graphene saturable absorbers for ~2 μm bulk and waveguide lasers[J]. Optical Materials Express, 8, 2803-2814(2018).

    [128] Kifle E, Mateos X. Vázquez de Aldana J R, et al. Femtosecond-laser-written Tm∶KLu(WO4)2 waveguide lasers[J]. Optics Letters, 42, 1169-1172(2017).

    [129] Kifle E, Mateos X, Loiko P et al. Tm∶KY1-x-yGdxLuy(WO4)2 planar waveguide laser passively Q-switched by single-walled carbon nanotubes[J]. Optics Express, 26, 4961-4966(2018).

    [130] Kifle E, Loiko P, Griebner U et al. Diamond saw dicing of thulium channel waveguide lasers in monoclinic crystalline films[J]. Optics Letters, 44, 1596-1599(2019).

    [131] Mary R, Brown G, Beecher S J et al. 1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler[J]. Optics Express, 21, 7943-7950(2013).

    [132] Ren Y Y, Brown G, Mary R et al. 7.8-GHz graphene-based 2-μm monolithic waveguide laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 395-400(2015).

    [133] Thorburn F, Lancaster A. McDaniel S, et al. 5.9 GHz graphene based Q-switched modelocked mid-infrared monolithic waveguide laser[J]. Optics Express, 25, 26166-26174(2017).

    [134] Li Z Q, Zhang Y X, Cheng C et al. 6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers[J]. Optics Express, 26, 11321-11330(2018).

    [135] Li Z Q, Dong N N, Cheng C et al. Enhanced nonlinear optical response of graphene by silver-based nanoparticle modification for pulsed lasing[J]. Optical Materials Express, 8, 1368-1377(2018).

    [136] Pang C, Li R, Li Z Q et al. Mode-locked lasers: lithium niobate crystal with embedded Au nanoparticles: a new saturable absorber for efficient mode-locking of ultrafast laser pulses at 1 μm[J]. Advanced Optical Materials, 6, 1870065(2018).

    [137] Li R, Pang C, Li Z Q et al. Fused silica with embedded 2D-like Ag nanoparticle monolayer: tunable saturable absorbers by interparticle spacing manipulation[J]. Laser & Photonics Reviews, 14, 1900302(2020).

    [138] Okhrimchuk A G, Obraztsov P A. 11-GHz waveguide Nd∶YAG laser CW mode-locked with single-layer graphene[J]. Scientific Reports, 5, 11172(2015).

    [139] Li Z Q, Dong N N, Zhang Y X et al. Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J]. APL Photonics, 3, 080802(2018).

    [140] Choi S Y, Calmano T, Rotermund F et al. 2-GHz carbon nanotube mode-locked Yb∶YAG channel waveguide laser[J]. Optics Express, 26, 5140-5145(2018).

    [141] Khurmi C, Hébert N B, Zhang W Q et al. Ultrafast pulse generation in a mode-locked erbium chip waveguide laser[J]. Optics Express, 24, 27177-27183(2016).

    [142] Grivas C, Ismaeel R, Corbari C et al. Generation of multi-gigahertz trains of phase-coherent femtosecond laser pulses in Ti∶sapphire waveguides[J]. Laser & Photonics Reviews, 12, 1800167(2018).

    [143] Wang S X, Pang C, Li Z Q et al. 8.6 GHz Q-switched mode-locked waveguide lasing based on LiNbO3 crystal embedded Cu nanoparticles[J]. Optical Materials Express, 9, 3808-3817(2019).

    [144] Pang C, Li R, Li Z Q et al. Copper nanoparticles embedded in lithium tantalate crystals for multi-GHz lasers[J]. ACS Applied Nano Materials, 2, 5871-5877(2019).

    [145] Li Z Q, Li R, Pang C et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber[J]. Optics Express, 27, 8727-8737(2019).

    [146] Ponarina M V, Okhrimchuk A G, Rybin M G et al. Dual-wavelength generation of picosecond pulses with 9.8 GHz repetition rate in Nd∶YAG waveguide laser with graphene[J]. Quantum Electronics, 49, 365-370(2019).

    [148] Choudhary A, Lagatsky A A, Kannan P et al. Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate[J]. Optics Letters, 37, 4416-4418(2012).

    [150] Choudhary A, Dhingra S. D'Urso B, et al. Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers[J]. IEEE Photonics Technology Letters, 27, 646-649(2015).

    [151] Jiang X T, Gross S, Zhang H et al. Bismuth telluride topological insulator nanosheet saturable absorbers for Q-switched mode-locked Tm∶ZBLAN waveguide lasers[J]. Annalen Der Physik, 528, 543-550(2016).

    Tools

    Get Citation

    Copy Citation Text

    Feng Chen, Ziqi Li. Solid-State Waveguide Lasers Based on Laser Crystals[J]. Chinese Journal of Lasers, 2020, 47(5): 0500008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jan. 6, 2020

    Accepted: Mar. 9, 2020

    Published Online: May. 12, 2020

    The Author Email: Chen Feng (drfchen@sdu.edu.cn)

    DOI:10.3788/CJL202047.0500008

    Topics