Journal of Synthetic Crystals, Volume. 52, Issue 3, 365(2023)

Wire Saw Slicing and Its Application in Silicon Carbide Wafers Processing

ZHANG Junran1,2,3, ZHU Ruzhong2,3, ZHANG Xi2,3, ZHANG Xuqing2,3, GAO Yu4, LU Yunhao1, PI Xiaodong2,3、*, YANG Deren2,3, and WANG Rong2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(65)

    [1] [1] YANG D R. Progress in silicon materials: from microelectronics to photovoltaics and optoelectronics[M]. Beijing: Science Press, 2004.

    [3] [3] WU H. Wire sawing technology: a state-of-the-art review[J]. Precision Engineering, 2016, 43: 1-9.

    [7] [7] HARDIN C W, QU J, SHIH A J. Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers[J]. Materials and Manufacturing Processes, 2004, 19(2): 355-367.

    [8] [8] LI S, DU S, TANG A, et al. Force modeling and control of SiC monocrystal wafer processing[J]. Journal of Manufacturing Science and Engineering, 2015, 137(6): 061003.

    [9] [9] LI S J, WAN B, LANDERS R. Surface roughness optimization in processing SiC monocrystal wafers by wire saw machining with ultrasonic vibration[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228: 725-739.

    [10] [10] HUANG H, ZHANG Y X, XU X P. Experimental investigation on the machining characteristics of single-crystal SiC sawing with the fixed diamond wire[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5): 955-965.

    [11] [11] LI J, KAO I, PRASAD V. Modeling stresses of contacts in wire saw slicing of polycrystalline and crystalline ingots: application to silicon wafer production[J]. Journal of Electronic Packaging, 1998, 120: 123-128.

    [12] [12] BHAGAVAT M, PRASAD V, KAO I. Elasto-hydrodynamic interaction in the free abrasive wafer slicing using a wiresaw: modeling and finite element analysis[J]. Journal of Tribology, 2000, 122(2): 394-404.

    [13] [13] YANG F Q, KAO I. Free abrasive machining in slicing brittle materials with wiresaw[J]. Journal of Electronic Packaging, 2001, 123(3): 254-259.

    [14] [14] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9/10): 574-581.

    [15] [15] MARSHALL D, LAWN B, EVANS A. Elastic/plastic indentation damage in ceramics: the lateral crack system[J]. Journal of the American Ceramic Society, 1982, 65(11): 561-566.

    [16] [16] EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553.

    [17] [17] BUIJS M, HOUTEN K K V. A model for lapping of glass[J]. Journal of Materials Science, 1993, 28(11): 3014-3020.

    [18] [18] BUIJS M, KORPEL-VAN HOUTEN K. A model for three-body abrasion of brittle materials[J]. Wear, 1993, 162/163/164: 954-956.

    [19] [19] WIEDERHORN S M, HOCKEY B J. Effect of material parameters on the erosion resistance of brittle materials[J]. Journal of Materials Science, 1983, 18(3): 766-780.

    [20] [20] ROUTBORT J L, MATZKE H. On the correlation between solid-particle erosion and fracture parameters in SiC[J]. Journal of Materials Science, 1983, 18(5): 1491-1496.

    [21] [21] MUKHOPADHYAY A K, CHAKRABORTY D, SWAIN M V, et al. Scratch deformation behaviour of alumina under a sharp indenter[J]. Journal of the European Ceramic Society, 1997, 17(1): 91-100.

    [22] [22] MOORE M A, KING F S. Abrasive wear of brittle solids[J]. Wear, 1980, 60(1): 123-140.

    [23] [23] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189.

    [24] [24] KOVALCHENKO A M. Studies of the ductile mode of cutting brittle materials (a review)[J]. Journal of Superhard Materials, 2013, 35(5): 259-276.

    [25] [25] AREFIN S, LI X P, RAHMAN M, et al. The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(7): 655.

    [26] [26] LIU K, LI X P, LIANG S Y. The mechanism of ductile chip formation in cutting of brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(9): 875-884.

    [27] [27] WU H, MELKOTE S N. Effect of crystallographic orientation on ductile scribing of crystalline silicon: role of phase transformation and slip[J]. Materials Science and Engineering: A, 2012, 549: 200-205.

    [29] [29] HUO F, JIN Z J, ZHAO F, et al. Experimental investigation of brittle to ductile transition of single crystal silicon by single grain grinding[J]. Key Engineering Materials, 2007, 329: 433-438.

    [30] [30] BIDIVILLE A, WASMER K, VAN DER MEER M, et al. Wire-sawing processes: parametrical study and modeling[J]. Solar Energy Materials and Solar Cells, 2015, 132: 392-402.

    [31] [31] BIERWISCH C, KBLER R, KLEER G, et al. Modelling of contact regimes in wire sawing with dissipative particle dynamics[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369(1945): 2422-30.

    [32] [32] ANSPACH O, HURKA B, SUNDER K. Structured wire: from single wire experiments to multi-crystalline silicon wafer mass production[J]. Solar Energy Materials and Solar Cells, 2014, 131: 58-63.

    [33] [33] WU H, YANG C, MELKOTE S N. Effect of reciprocating wire slurry sawing on surface quality and mechanical strength of as-cut solar silicon wafers[J]. Precision Engineering, 2014, 38(1): 121-126.

    [34] [34] LARS J, ERIK O J, TROND B, et al. Heat transfer during multiwire sawing of silicon wafers[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(3): 031006.

    [35] [35] ENOMOTO T, SHIMAZAKI Y, TANI Y, et al. Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot[J]. CIRP Annals, 1999, 48(1): 273-276.

    [36] [36] CHIBA Y, TANI Y, ENOMOTO T, et al. Development of a high-speed manufacturing method for electroplated diamond wire tools[J]. CIRP Annals, 2003, 52(1): 281-284.

    [37] [37] CHUNG C, TSAY G D, TSAI M H. Distribution of diamond grains in fixed abrasive wire sawing process[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9): 1485-1494.

    [38] [38] WU H, MELKOTE S. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: application to wire sawing of silicon wafers[J]. Journal of Engineering Materials and Technology, 2012, 134: 041011.

    [39] [39] KIM D Y, LEE T K, PARK C J, et al. Evaluation of cutting ability of electroplated diamond wire using a test system and theoretical approach[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(4): 553-560.

    [40] [40] FURUTANI K, SUZUKI K. A desktop saw wire coating machine by using electrical discharge machining[C]//2009 IEEE International Conference on Control and Automation. December 9-11, 2009, Christchurch, New Zealand. IEEE, 2010: 2165-2170.

    [41] [41] ZHANG Z Y, XIAO B, DUAN D Z, et al. Investigation on the brazing mechanism and machining performance of diamond wire saw based on Cu-Sn-Ti alloy[J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 211-219.

    [42] [42] MEINER D, SCHOENFELDER S, HURKA B, et al. Loss of wire tension in the wire web during the slurry based multi wire sawing process[J]. Solar Energy Materials and Solar Cells, 2014, 120: 346-355.

    [43] [43] KIM H, KIM D, KIM C, et al. Multi-wire sawing of sapphire crystals with reciprocating motion of electroplated diamond wires[J]. CIRP Annals, 2013, 62(1): 335-338.

    [44] [44] KAMIYA O, MIYANO Y, TAKAHASHI M, et al. Soldering process and cutting performance of micro saw wire bonded with diamond grains[J]. International Journal of Modern Physics: Conference Series, 2012, 6: 491-496.

    [45] [45] KUMAR A, KAMINSKI S, MELKOTE S N, et al. Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers[J]. Wear, 2016, 364/365: 163-168.

    [46] [46] PALA U, SSSMAIER S, KUSTER F, et al. Experimental investigation of tool wear in electroplated diamond wire sawing of silicon[J]. Procedia CIRP, 2018, 77: 371-374.

    [47] [47] SCHWINDE S, BERG M, KUNERT M. New potential for reduction of kerf loss and wire consumption in multi-wire sawing[J]. Solar Energy Materials and Solar Cells, 2015, 136: 44-47.

    [48] [48] MLLER H J. Basic mechanisms and models of multi-wire sawing[J]. Advanced Engineering Materials, 2004, 6(7): 501-513.

    [49] [49] YU X G, WANG P, LI X Q, et al. Thin Czochralski silicon solar cells based on diamond wire sawing technology[J]. Solar Energy Materials and Solar Cells, 2012, 98: 337-342.

    [50] [50] JIA Z, ZHAO L Q, REN Z, et al. Investigation into influence of feed speed on surface roughness in wire sawing[J]. Materials and Manufacturing Processes, 2015, 30: 875 - 881.

    [52] [52] CHUNG C, KAO I. Modeling of axially moving wire with damping: eigenfunctions, orthogonality and applications in slurry wiresaws[J]. Journal of Sound and Vibration, 2011, 330(12): 2947-2963.

    [53] [53] KIM D, KIM H, LEE S, et al. Effect of initial deflection of diamond wire on thickness variation of sapphire wafer in multi-wire saw[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(2): 117-121.

    [54] [54] LI Z, WANG M J, CAI Y J, et al. Experimental study on surface topography and fracture strength of worn saw wire in multi-wire sawing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9): 4125-4132.

    [55] [55] MENG H C, ZHOU L. Mechanical behavior of diamond-sawn multi-crystalline silicon wafers and its improvement[J]. Silicon, 2014, 6(2): 129-135.

    [56] [56] POGUE V, MELKOTE S N, DANYLUK S. Residual stresses in multi-crystalline silicon photovoltaic wafers due to casting and wire sawing[J]. Materials Science in Semiconductor Processing, 2018, 75: 173-182.

    [57] [57] WRZNER S, HERMS M, KADEN T, et al. Characterization of the diamond wire sawing process for monocrystalline silicon by Raman spectroscopy and SIREX polarimetry[J]. Energies, 2017, 10(4): 414.

    [58] [58] LIU T Y, GE P Q, BI W B, et al. Subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing[J]. Materials Science in Semiconductor Processing, 2017, 57: 147-156.

    [59] [59] SUZUKI T, NISHINO Y, YAN J W. Mechanisms of material removal and subsurface damage in fixed-abrasive diamond wire slicing of single-crystalline silicon[J]. Precision Engineering, 2017, 50: 32-43.

    [60] [60] XIAO H P, WANG H R, YU N, et al. Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers[J]. Journal of Materials Processing Technology, 2019, 273: 116267.

    [61] [61] BHAGAVAT S, KAO I. A finite element analysis of temperature variation in silicon wafers during wiresaw slicing[J]. International Journal of Machine Tools and Manufacture, 2008, 48(1): 95-106.

    [62] [62] BIDIVILLE A, WASMER K, MICHLER J, et al. Mechanisms of wafer sawing and impact on wafer properties[J]. Progress in Photovoltaics: Research and Applications, 2010, 18(8): 563-572.

    [63] [63] ZHAO H X, JIN R, WU S, et al. PDE-constrained Gaussian process model on material removal rate of wire saw slicing process[J]. Journal of Manufacturing Science and Engineering, 2011, 133(2): 021012.

    [64] [64] ZHU L Q, KAO I. Galerkin-based modal analysis on the vibration of wire-slurry system in wafer slicing using a wiresaw[J]. Journal of Sound and Vibration, 2005, 283(3/4/5): 589-620.

    [65] [65] LIEDKE T, KUNA M. A macroscopic mechanical model of the wire sawing process[J]. International Journal of Machine Tools and Manufacture, 2011, 51(9): 711-720.

    [70] [70] YAO T T, YIN D Q, SAITO M, et al. Nanoindentation-induced phase transformation between SiC polymorphs[J]. Materials Letters, 2018, 220: 152-155.

    [71] [71] MATSUMOTO M, HUANG H, HARADA H, et al. On the phase transformation of single-crystal 4H-SiC during nanoindentation[J]. Journal of Physics D: Applied Physics, 2017, 50(26): 265303.

    [72] [72] LIU X S, ZHANG J R, XU B J, et al. Deformation of 4H-SiC: the role of dopants[J]. Applied Physics Letters, 2022, 120(5): 052105.

    [73] [73] LI J, YANG G, LIU X, et al. Dislocations in 4H silicon carbide[J]. Journal of Physics D: Applied Physics, 2022, 55(46): 463001.

    [74] [74] ZHU B, ZHAO D, ZHAO H W. A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation[J]. Ceramics International, 2019, 45(4): 5150-5157.

    [75] [75] LIU X S, WANG R, ZHANG J R, et al. Doping-dependent nucleation of basal plane dislocation in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2022, 55: 334002.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Junran, ZHU Ruzhong, ZHANG Xi, ZHANG Xuqing, GAO Yu, LU Yunhao, PI Xiaodong, YANG Deren, WANG Rong. Wire Saw Slicing and Its Application in Silicon Carbide Wafers Processing[J]. Journal of Synthetic Crystals, 2023, 52(3): 365

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 12, 2022

    Accepted: --

    Published Online: Apr. 13, 2023

    The Author Email: Xiaodong PI (xdpi@zju.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics