Chinese Journal of Lasers, Volume. 51, Issue 7, 0701009(2024)

Advanced Applications for Capillary Discharge 46.9 nm Extreme Ultraviolet Laser

Huaiyu Cui1,2, Yujie Shen1, Dongdi Zhao1, Bo An1, and Yongpeng Zhao1,2、*
Author Affiliations
  • 1Department of Opto-Electronic Information Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
  • 2National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
  • show less
    References(93)

    [1] Ni S J. U.S. Department of Energy announces net fusion energy gain[N]. Chinese Science Edition Newspaper.

    [2] Wachulak P, Torrisi A, Ayele M et al. Nanoimaging using soft X-ray and EUV laser-plasma sources[J]. EPJ Web of Conferences, 167, 03001(2018).

    [3] Ravasio A, Gauthier D, Maia F R N C et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Physical Review Letters, 103, 028104(2009).

    [4] Wang C, Wang W, Sun J R et al. Experimental diagnoses of plasma electron density by interferometry using an X-ray laser as probe[J]. Acta Physica Sinica, 54, 202-205(2005).

    [5] Makimura T, Torii S, Niino H et al. Nano- and micromachining of transparent materials using laser plasma soft X-rays[C](2009).

    [6] Cornacchia M. The linac coherent light source[J]. Synchrotron Radiation News, 11, 28-33(1998).

    [8] Zhao Z T, Wang D, Yin L X et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 46, 0100004(2019).

    [9] Yang J Y, Li Q M, Yu S Y et al. Efficient ionization detection of atoms, molecules,and free radicals: dalian coherent light source beamline[C], 314(2017).

    [10] Rocca J J, Shlyaptsev V, Tomasel F G et al. Demonstration of a discharge pumped table-top soft-X-ray laser[J]. Physical Review Letters, 73, 2192-2195(1994).

    [11] Benware B R, Macchietto C D, Moreno C H et al. Demonstration of a high average power tabletop soft X-ray laser[J]. Physical Review Letters, 81, 5804-5807(1998).

    [12] Heinbuch S, Grisham M, Martz D et al. Demonstration of a desk-top size high repetition rate soft X-ray laser[J]. Optics Express, 13, 4050-4055(2005).

    [13] Ben-Kish A, Shuker M, Nemirovsky R A et al. Plasma dynamics in capillary discharge soft X-ray lasers[J]. Physical Review Letters, 87, 015002(2001).

    [14] Ritucci A, Tomassetti G, Palladino L et al. Investigation of the output pulse characteristics of a 46.9 nm Ar capillary discharge soft X-ray laser[C], 641, 119-124(2002).

    [15] Hotta E, Sakai Y, Hayashi Y et al. Extreme ultraviolet light sources and soft X-ray laser based on discharge produced plasma[J]. Proceedings of SPIE, 9524, 95242U(2015).

    [16] Tomassetti G, Ritucci A, Reale A et al. Capillary discharge soft X-ray lasing in Ne-like Ar pumped by long current pulses[J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 19, 73-77(2002).

    [17] Ritucci A, Tomassetti G, Reale A et al. Investigation of a highly saturated soft X-ray amplification in a capillary discharge plasma waveguide[J]. Applied Physics B, 78, 965-969(2004).

    [18] Ostashev V I, Gafarov A M, Politov V Y et al. Evidence of soft X-ray lasing in SIGNAL pulsed-power facility experiments with argon capillary plasma[J]. IEEE Transactions on Plasma Science, 34, 2368-2376(2006).

    [19] Afonin V I, Gafarov A M, Gilev O N et al. Effect of the direction of a preionization current on X-ray emission from a capillary discharge plasma[J]. Plasma Physics Reports, 33, 562-566(2007).

    [20] Tan C A, Kwek K H. Development of a low current discharge-driven soft X-ray laser[J]. Journal of Physics D: Applied Physics, 40, 4787-4792(2007).

    [21] Kwek K H, Tan C A, Kusse B R et al. Lasing in Ne-like argon capillary discharge at low current and the effect of current prepulse[J]. AIP Conference Proceedings, 1088, 168-171(2009).

    [22] Kolacek K. Repetitive XUV laser based on the fast capillary discharge[J]. Proceedings of SPIE, 8140, 814015(2011).

    [23] Szasz J, Kiss M, Santa I et al. Critical parameters of the pumping scheme of Ar+8 lasers excited by Z pinches in long capillaries[J]. Contributions to Plasma Physics, 52, 770-775(2012).

    [24] Szasz J, Kiss M, Santa I et al. Magnetoelectric confinement and stabilization of Z-pinch in a soft-X-ray Ar+8 laser[J]. Physical Review Letters, 110, 183902(2013).

    [25] Barnwal S, Prasad Y B S R, Nigam S et al. Characterization of the 46.9-nm soft X-ray laser beam from a capillary discharge[J]. Applied Physics B, 117, 131-139(2014).

    [26] Cheng Y L, Zhao Y P, Wang Q et al. Soft X-ray amplification in 3- and 4-mm diameter capillaries[J]. Chinese Optics Letters, 2, 658-660(2004).

    [27] Khan M U, Zhao Y P, Hui T et al. Impact of discharge currents on the intensity of 46.9 nm capillary discharge soft X-ray laser[J]. Optics Express, 27, 16738-16750(2019).

    [28] Tomasel F G, Rocca J J, Shlyaptsev V N et al. Lasing at 60.8 nm in Ne-like sulfur ions in ablated material excited by a capillary discharge[J]. Physical Review A, 55, 1437-1440(1997).

    [29] Frati M, Seminario M, Rocca J J. Demonstration of a 10-µJ tabletop laser at 52.9 nm in neonlike chlorine[J]. Optics Letters, 25, 1022-1024(2000).

    [30] Sakai Y, Takahashi S, Watanabe T H M et al. The possibility of a capillary discharge soft X-ray laser with shorter wavelength by utilizing a recombination scheme[J]. Journal of Plasma & Fusion Research, 8, 1317-1312(2009).

    [31] Kolacek K, Schmidt J, Prukner V et al. Ways to discharge-based soft X-ray lasers with the wavelength λ<15 nm[J]. Laser and Particle Beams, 26, 167-178(2008).

    [32] Zhao Y P, Jiang S, Xie Y et al. Demonstration of soft X-ray laser of Ne-like Ar at 69.8 nm pumped by capillary discharge[J]. Optics Letters, 36, 3458-3460(2011).

    [33] Zhao Y P, Liu T, Zhang W H et al. Demonstration of gain saturation and double-pass amplification of a 69.8 nm laser pumped by capillary discharge[J]. Optics Letters, 41, 3779-3782(2016).

    [34] Liu Y, Seminario M, Tomasel F G et al. Achievement of essentially full spatial coherence in a high-average-power soft-X-ray laser[J]. Physical Review A, 63, 033802(2001).

    [35] Tong H, Zhao Y P, Khan M U et al. Enhancement of Ne-like Ar 46.9 nm laser intensity by increasing the inner diameter of the capillary[J]. The European Physical Journal D, 73, 132(2019).

    [36] Zhao Y P, Liu T, Jiang S et al. Characteristics of a multi-wavelength Ne-like Ar laser excited by capillary discharge[J]. Applied Physics B, 122, 1-6(2016).

    [37] Zhao Y P, Zhao D D, An B et al. Demonstration of double-pass amplification of gain saturated 46.9 nm laser[J]. Optics Communications, 506, 127571(2022).

    [38] Zhao D D, Zhao Y P, An B et al. Demonstration of multi-pass amplification of 46.9 nm laser pumped by capillary discharge[J]. Matter and Radiation at Extremes, 8, 044402(2023).

    [39] Elson J M, Rahn J P, Bennett J M. Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties[J]. Applied Optics, 22, 3207-3219(1983).

    [40] Benware B R, Ozols A, Rocca J J et al. Focusing of a tabletop soft-X-ray laser beam and laser ablation[J]. Optics Letters, 24, 1714-1716(1999).

    [41] Grisham M, Vaschenko G, Menoni C S et al. Damage to extreme-ultraviolet Sc/Si multilayer mirrors exposed to intense 46.9-nm laser pulses[J]. Optics Letters, 29, 620-622(2004).

    [42] Cui H Y, Zhao Y P, Jiang S et al. Experiment of Si target ablation with soft X-ray laser operating at a wavelength of 46.9 nm[J]. Optics & Laser Technology, 46, 20-24(2013).

    [43] Zhao Y P, Cui H Y, Zhang W H et al. Si and Cu ablation with a 46.9-nm laser focused by a toroidal mirror[J]. Optics Express, 23, 14126-14134(2015).

    [44] Baez A V. Fresnel zone plate for optical image formation using extreme ultraviolet and soft X radiation[J]. Journal of the Optical Society of America, 51, 405-412(1961).

    [45] Vaschenko G, Etxarri A G, Menoni C S et al. Nanometer-scale ablation with a table-top soft X-ray laser[J]. Optics Letters, 31, 3615-3617(2006).

    [46] Capeluto M G, Vaschenko G, Grisham M et al. Nanopatterning with interferometric lithography using a compact λ=46.9-nm laser[J]. IEEE Transactions on Nanotechnology, 5, 3-7(2006).

    [47] Wachulak P W, Capeluto M G, Marconi M C et al. Nanoscale patterning in high resolution HSQ photoresist by interferometric lithography with tabletop extreme ultraviolet lasers[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25, 2094-2097(2007).

    [48] Wachulak P, Grisham M, Heinbuch S et al. Interferometric lithography with an amplitude division interferometer and a desktop extreme ultraviolet laser[J]. Journal of the Optical Society of America B, 25, B104-B107(2008).

    [49] Cui H Y, Wang Z Y, Wu S et al. Focusing and wavefront splitting of an extreme ultraviolet laser with a tubular optical element[J]. Photonics, 10, 629(2023).

    [50] Urbanski L, Isoyan A, Stein A et al. Defect-tolerant extreme ultraviolet nanoscale printing[J]. Optics Letters, 37, 3633-3635(2012).

    [51] Rossall A K, Aslanyan V, Tallents G J et al. Ablation of submicrometer holes using an extreme-ultraviolet laser[J]. Physical Review Applied, 3, 064013(2015).

    [52] Cui H Y, Zhao Y P, Khan M U et al. Study of thermal effect in the interaction of nanosecond capillary discharge extreme ultraviolet laser with copper[J]. Applied Sciences, 10, 214(2019).

    [53] Cui H Y, Li L, Zhao D D et al. Study of photo-ionization and thermal effects on the interaction of a nanosecond extreme ultraviolet laser with copper[J]. Optics Express, 30, 5817-5825(2022).

    [54] Juha L, Bittner M, Chvostova D et al. Ablation of organic polymers by 46.9-nm-laser radiation[J]. Applied Physics Letters, 86, 034109(2005).

    [55] Juha L, Krása J, Präg A et al. Ablation of poly(methyl methacrylate) by a single pulse of soft X-rays emitted from Z-pinch and laser-produced plasmas[J]. Surface Review and Letters, 9, 347-352(2002).

    [56] Juha L, Präg R A, Krása J et al. Ablation of organic polymers and elemental solids induced by intense XUV radiation[J]. AIP Conference Proceedings, 641, 54-59(2002).

    [57] Zhang X, Jacobsen C, Lindaas S et al. Exposure strategies for polymethyl methacrylate from in situ X-ray absorption near edge structure spectroscopy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 13, 1477-1483(1995).

    [58] Maida O, Kohma N, Ueno M et al. Evaporation and expansion of poly-tetra-fluoro-ethylene induced by irradiation of soft X-rays from a figure-8 undulator[J]. Japanese Journal of Applied Physics, 40, 2435-2439(2001).

    [59] Beetz T, Jacobsen C. Soft X-ray radiation-damage studies in PMMA using a cryo-STXM[J]. Journal of Synchrotron Radiation, 10, 280-283(2003).

    [60] Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters, 7, 196-198(1982).

    [61] Juha L, Hájková V, Chalupsky J et al. Capillary-discharge 46.9-nm laser-induced damage to a-C thin films exposed to multiple laser shots below single-shot damage threshold[J]. Proceedings of SPIE, 6586, 65860D(2007).

    [62] An H J, Wang J S, Cui H Y et al. Periodic surface structure of 4H-SiC by 46.9 nm laser[J]. Optics Express, 31, 15438-15448(2023).

    [63] Pira P, Burian T, Kolpaková A et al. Langmuir probe measurement of the bismuth plasma plume formed by an extreme-ultraviolet pulsed laser[J]. Journal of Physics D: Applied Physics, 47, 405205(2014).

    [64] Tanaka T, Annaka M, Ilmain F, Karalis T K et al. Phase transitions of gels[M]. Mechanics of swelling. NATO ASI series, 64, 683-703(1992).

    [65] Li Y, Tanaka T. Phase transition of gels[J]. Annual Review of Materials Science, 22, 243-277(1992).

    [66] Emmony D C, Howson R P, Willis L J. Laser mirror damage in germanium at 10.6 μm[J]. Applied Physics Letters, 23, 598-600(1973).

    [67] Sipe J E, Young J F, Preston J S et al. Laser-induced periodic surface structure. I. Theory[J]. Physical Review B, 27, 1141-1154(1983).

    [68] Vorobyev A Y, Makin V S, Guo C L. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. Journal of Applied Physics, 101, 034903(2007).

    [69] Vorobyev A Y, Guo C L. Femtosecond laser-induced periodic surface structure formation on tungsten[J]. Journal of Applied Physics, 104, 063523(2008).

    [70] Ritucci A, Tomassetti G, Reale A et al. Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam[J]. Optics Letters, 31, 68-70(2006).

    [71] Cui H Y, Li L, Zhao D D et al. Nanoparticles induced by nanosecond extreme ultraviolet laser at 46.9 nm assisted by single-layer graphene[J]. Optics & Laser Technology, 156, 108561(2022).

    [72] Vyšin L, Burian T, Chalupský J et al. Characterization of the focused beam of desktop 10-Hz capillary-discharge 46.9-nm laser[J]. Proceedings of SPIE, 7361, 73610O(2009).

    [73] Frolov O, Kolacek K, Straus J et al. Generation and application of the soft X-ray laser beam based on capillary discharge[J]. Journal of Physics: Conference Series, 511, 012035(2014).

    [74] Zhao Y P, Cui H Y, Zhang S Q et al. Formation of nanostructures induced by capillary-discharge soft X-ray laser on BaF2 surfaces[J]. Applied Surface Science, 396, 1201-1205(2017).

    [75] Cui H Y, Zhang S Q, Li J J et al. Craters and nanostructures on BaF2 sample induced by a focused 46.9 nm laser[J]. AIP Advances, 7, 085116(2017).

    [76] Cui H Y, Frolov A, Schmidt J et al. Characterizing the grating-like nanostructures formed on BaF2 surfaces exposed to extreme ultraviolet laser radiation[J]. Applied Sciences, 12, 1251(2022).

    [77] Li C H, Kang X L, Han W et al. Nanosecond laser-induced surface damage and material failure mechanism of single crystal CaF2 (111) at 355 nm[J]. Applied Surface Science, 480, 1070-1077(2019).

    [78] Shin J W, Dong F, Grisham M E et al. Extreme ultraviolet photoionization of aldoses and ketoses[J]. Chemical Physics Letters, 506, 161-166(2011).

    [79] Müller R, Kuznetsov I, Arbelo Y et al. Depth-profiling microanalysis of CoNCN water-oxidation catalyst using a λ=46.9 nm plasma laser for nano-ionization mass spectrometry[J]. Analytical Chemistry, 90, 9234-9240(2018).

    [80] Kuznetsov I, Filevich J, Dong F et al. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry[J]. Nature Communications, 6, 6944(2015).

    [81] Bleiner D, Rush L A, Rocca J J et al. Rapid quasi non-destructive 3D chemical visualization with tabletop X-ray laser mass spectrometry[J]. Proceedings of SPIE, 11111, 1111107(2019).

    [82] Menoni C S. Nanoscale chemical imaging by extreme ultraviolet laser ablation time of flight spectrometry[C], ET2B.1(2018).

    [83] Kuznetsov I, Green T, Chao W et al. Soft X-ray ablation mass spectrometry: high sensitivity elemental trace analysis[J]. Proceedings of SPIE, 10243, 102430G(2017).

    [84] Bleiner D, Trottmann M, Cabas-Vidani A et al. XUV laser mass spectrometry for nano-scale 3D elemental profiling of functional thin films[J]. Applied Physics A, 126, 230(2020).

    [85] Mozumder A. Ionization and excitation yields in liquid water due to the primary irradiation: relationship of radiolysis with far UV-photolysis[J]. Physical Chemistry Chemical Physics, 4, 1451-1456(2002).

    [86] Nováková E, Davídková M, Vyšín L et al. Damage to dry plasmid DNA induced by nanosecond XUV-laser pulses[J]. Proceedings of SPIE, 8077, 80770W(2011).

    [87] Nováková E, Vyšín L, Burian T et al. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum[J]. Physical Review E, 91, 042718(2015).

    [88] Vyšín L, Burian T, Ukraintsev E et al. Dose-rate effects in breaking DNA strands by short pulses of extreme ultraviolet radiation[J]. Radiation Research, 189, 466-476(2018).

    [89] Wachulak P W, Marconi M C, Bartels R A et al. Soft X-ray laser holography with wavelength resolution[J]. Journal of the Optical Society of America B, 25, 1811-1814(2008).

    [90] Wachulak P W, Marconi M C, Bartels R A et al. Holographic imaging with a nanometer resolution using compact table-top EUV laser[J]. Opto-Electronics Review, 18, 80-90(2010).

    [91] Malm E B, Monserud N C, Brown C G et al. Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object[J]. Optics Express, 21, 9959-9966(2013).

    [92] Sandberg R L, Song C Y, Wachulak P W et al. High numerical aperture tabletop soft X-ray diffraction microscopy with 70-nm resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 24-27(2008).

    [93] Carbajo S, Howlett I D, Brizuela F et al. Sequential single-shot imaging of nanoscale dynamic interactions with a table-top soft X-ray laser[J]. Optics Letters, 37, 2994-2996(2012).

    Tools

    Get Citation

    Copy Citation Text

    Huaiyu Cui, Yujie Shen, Dongdi Zhao, Bo An, Yongpeng Zhao. Advanced Applications for Capillary Discharge 46.9 nm Extreme Ultraviolet Laser[J]. Chinese Journal of Lasers, 2024, 51(7): 0701009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: May. 29, 2023

    Accepted: Aug. 11, 2023

    Published Online: Apr. 2, 2024

    The Author Email: Zhao Yongpeng (zhaoyp3@hit.edu.cn)

    DOI:10.3788/CJL230867

    CSTR:32183.14.CJL230867

    Topics