Acta Optica Sinica, Volume. 39, Issue 9, 0930003(2019)
Combined Estimation of Chlorophyll Content in Cotton Canopy Based on Hyperspectral Parameters and Back Propagation Neural Network
[1] Casa R, Castaldi F, Pascucci S et al. Chlorophyll estimation in field crops: an assessment of handheld leaf meters and spectral reflectance measurements[J]. The Journal of Agricultural Science, 153, 876-890(2015).
[2] Guelman M, Ortenberg F. Small satellite's role in future hyperspectral Earth observation missions[J]. Acta Astronautica, 64, 1252-1263(2009).
[3] Zhang L F, Wang S H, Huang C P. Top-of-atmosphere hyperspectral remote sensing of solar-induced chlorophyll fluorescence: a review of methods[J]. Journal of Remote Sensing, 22, 1-12(2018).
[4] Sun J, Shi S, Yang J et al. Estimating leaf chlorophyll status using hyperspectral lidar measurements by PROSPECT model inversion[J]. Remote Sensing of Environment, 212, 1-7(2018).
[6] Dou Z G, Cui L J, Li J et al. Hyperspectral estimation of the chlorophyll content in short-term and long-term restorations of mangrove in Quanzhou Bay estuary, China[J]. Sustainability, 10, 1127(2018).
[7] Li D, Cheng T, Zhou K et al. WREP: a wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 103-117(2017).
[8] Qiu Z J, Song H Y, He Y et al. Variation rules of the nitrogen content of the oilseed rape at growth stage using SPAD and visible-NIR[J]. Transactions of the CSAE, 23, 150-154(2007).
[9] Zhang X L, Zhang F, Zhang H W et al. Optimization of soil salt inversion model based on spectral transformation from hyperspectral index[J]. Transactions of the Chinese Society of Agricultural Engineering, 34, 110-117(2018).
[11] Li J L, Peng J Y. Estimation of winter wheat LAI at different growth stages based on canopy hyperspectral remote sensing system[J]. Journal of Triticeae Crops, 38, 979-987(2018).
[12] Liang L, Yang M H, Deng K D et al. A new hyperspectral index for the estimation of nitrogen contents of wheat canopy[J]. Acta Ecologica Sinica, 31, 6594-6605(2011).
[13] Xiao Y F, Gong H L, Zhou D M. A study on the hyperspectral inversion for estimating leaf chlorophyll content of clover based on factor analysis[J]. Acta Ecologica Sinica, 32, 3098-3106(2012).
[15] Gao D Z, Zhang W L, Chen M T et al. Retrieval of carotenoid contents of Kandelia candel based on hyper-spectral remote sensing data[J]. Chinese Journal of Ecology, 33, 3053-3059(2014).
[16] Tian J G, Wang S D, Zhang L F et al. Spectral index sensitivity study of winter wheat chlorophyll inversion using hyperspectral remote sensing vegetation index[J]. Science Technology and Engineering, 16, 1-8(2016).
[17] Zhang X Z, Zheng G Q, Dai T B et al. Estimation models of summer maize leaf pigment content based on canopy reflectance spectra[J]. Journal of Maize Sciences, 18, 55-60(2010).
[18] Chen B, Wang Q, Xiao C H et al. Exploration and recognition of spectral characteristics of cotton leaf suffered nine stresses[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 24, 64-73(2015).
[20] Yang T, Chen X W, Wan W et al. Soil moisture retrieval in the Tibetan Plateau using optical and passive microwave remote sensing data[J]. Chinese Journal of Geophysics, 60, 2556-2567(2017).
[21] Nijat K, Shi Q D, Wang J Z et al. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model[J]. Transactions of the Chinese Society of Agricultural Engineering, 33, 208-216(2017).
[22] Chu W L, Qi Y B, Chang Q R et al. Relationship between chlorophyll content and hyperspectral parameters in canopy leaves of cotton[J]. Journal of Northwest A & F University(Natural Science Edition), 44, 65-73(2016).
[23] Sun B Y, Chang Q R, Liu M Y. Inversion chlorophyll mass fraction in winter wheat canopy by hyperspectral reflectance[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 26, 552-559(2017).
[24] Yang K M, Zhang W W, Zhuo W et al. Research on inversing chlorophyll content based on neural network methods optimized by the harmonic analysis of red edge spectrum[J]. Science Technology and Engineering, 16, 19-24(2016).
[25] Liu W Y, Pan J. A hyperspectral assessment model for leaf chlorophyll content of pinus massoniana based on neural network[J]. Chinese Journal of Applied Ecology, 28, 1128-1136(2017).
[26] Guo B B, Zhu Y J, Feng W et al. Remotely estimating aerial N uptake in winter wheat using red-edge area index from multi-angular hyperspectral data[J]. Frontiers in Plant Science, 9, 675(2018).
[27] Chang J, Clay S A, Clay D E et al. Clouds influence precision and accuracy of ground-based spectroradiometers[J]. Communications in Soil Science and Plant Analysis, 36, 1799-1807(2005).
Get Citation
Copy Citation Text
Ablet Ershat, Maimaitiaili Baidengsha, Sawut Mamat, Shenqun An. Combined Estimation of Chlorophyll Content in Cotton Canopy Based on Hyperspectral Parameters and Back Propagation Neural Network[J]. Acta Optica Sinica, 2019, 39(9): 0930003
Category: Spectroscopy
Received: Mar. 12, 2019
Accepted: May. 6, 2019
Published Online: Sep. 9, 2019
The Author Email: Mamat Sawut (korxat@xju.edu.cn)