Acta Optica Sinica, Volume. 39, Issue 9, 0930003(2019)

Combined Estimation of Chlorophyll Content in Cotton Canopy Based on Hyperspectral Parameters and Back Propagation Neural Network

Ablet Ershat1,2, Maimaitiaili Baidengsha4, Sawut Mamat1,2,3、*, and Shenqun An5
Author Affiliations
  • 1 College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
  • 2 Key Laboratory of Oasis Ecology of Ministry of Education, Urumqi, Xinjiang 830046, China
  • 3 Key Laboratory of Xinjiang General Institutions of Higher Learning for Smart City and Environment Modeling, Urumqi, Xinjiang 830046, China
  • 4 Institute of Nuclear and Biotechnologies, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830046, China
  • 5 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • show less
    Figures & Tables(7)
    Spectral reflectance of canopy at different conditions. (a) Spectral reflectance of cotton with different health conditions; (b) spectral reflectance of cotton with different phosphorus treatments; (c) spectral reflectance of different cotton cultivars
    Correlation between transformation spectral curves and chlorophyll content in cotton. (a) Original spectrum; (b) continuum-removal spectrum; (c) first-order differential spectrum
    Visual representation of autocorrelation matrix between spectral bands. (a) Original spectra; (b) continuum-removal spectra; (c) first-order differential spectra
    1∶1 fitting results between measured values and predicted values by BP neural network models. (a) BP neural network model based on REP parameters; (b) BP neural network model based on FDR-VI; (c) BP neural network model based on R-VI; (d) BP neural network model based on CR-VI
    • Table 1. Hyperspectral parameters

      View table

      Table 1. Hyperspectral parameters

      TransformationParameterFull nameRef.
      Red edge parameterREPRed edge position[7]
      DλredRed edge amplitude[10]
      DλminMinimum amplitude[11]
      SredRed edge area[11]
      λminRed gully[10]
      FDR-VIBmSRFirst derivative mSR[12]
      BmNDFirst derivative mND[12]
      R-VI and CR-VImSRModified simple ratio index[13]
      mNDModified normalized difference index[13]
      NDIRed-edge normalized difference index[14]
      DDDouble difference index[15]
      MCARIModified chlorophyll absorption ratio index[16]
      BGIBlue/green pigment index[13]
      TCARITransformed chlorophyll absorption in reflectance index[16]
      CARIChlorophyll absorption ratio index[17]
    • Table 2. Correlation between hyperspectral parameters and chlorophyll contents

      View table

      Table 2. Correlation between hyperspectral parameters and chlorophyll contents

      ParameterCorrelation coefficient
      CARI-0.255(R-VI), -0.570(CR-VI)
      MCARI-0.036(R-VI),-0.284(CR-VI)
      mSR0.836(R-VI),0.782(CR-VI)
      mND0.836(R-VI),0.782(CR-VI)
      NDI0.868(R-VI),0.804(CR-VI)
      DD0.809(R-VI),0.765(CR-VI)
      BGI-0.408(R-VI),-0.229(CR-VI)
      TCARI-0.109(R-VI),-0.397(CR-VI)
      REP0.342
      Dλred0.528
      Dλmin-0.01
      Sred0.543
      λmin-0.09
      BmSR0.759
      BmND0.781
    • Table 3. Comparison of modeling results by different models

      View table

      Table 3. Comparison of modeling results by different models

      ModelCalibrationValidation
      R2RMSERE /%R2RMSERE /%
      Red edge parameter0.352.423.480.272.774.03
      FDR-VI0.532.112.540.562.192.89
      R-VI0.691.691.650.821.462.08
      CR-VI0.661.701.700.851.371.97
    Tools

    Get Citation

    Copy Citation Text

    Ablet Ershat, Maimaitiaili Baidengsha, Sawut Mamat, Shenqun An. Combined Estimation of Chlorophyll Content in Cotton Canopy Based on Hyperspectral Parameters and Back Propagation Neural Network[J]. Acta Optica Sinica, 2019, 39(9): 0930003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Mar. 12, 2019

    Accepted: May. 6, 2019

    Published Online: Sep. 9, 2019

    The Author Email: Mamat Sawut (korxat@xju.edu.cn)

    DOI:10.3788/AOS201939.0930003

    Topics