Optics and Precision Engineering, Volume. 33, Issue 8, 1259(2025)

A visual inertial SLAM system based on key planes with heterogeneous feature fusion

Yehu SHEN1, Yifan HE2、*, Jikun WEI1, and Daqing ZHANG1
Author Affiliations
  • 1College of Mechanical Engineering,Suzhou University of Science and Technology, Suzhou25009 , China
  • 2Institute of Intelligent Science and Engineering, Shenzhen Polytechnic University, Shenzhen518055, China
  • show less
    References(38)

    [1] WEN T C, FANG Y C, LU B et al. LIVER: a tightly coupled LiDAR-inertial-visual state estimator with high robustness for underground environments[J]. IEEE Robotics and Automation Letters, 9, 2399-2406(2024).

    [2] LEE J, KOMATSU R, SHINOZAKI M et al. Switch-SLAM: switching-based LiDAR-inertial-visual SLAM for degenerate environments[J]. IEEE Robotics and Automation Letters, 9, 7270-7277(2024).

    [3] HU C, ZHU S Q, LIANG Y M et al. Tightly-coupled visual-inertial-pressure fusion using forward and backward IMU preintegration[J]. IEEE Robotics and Automation Letters, 7, 6790-6797(2022).

    [4] JUNG J H, CHOE Y, PARK C G. Photometric visual-inertial navigation with uncertainty-aware ensembles[J]. IEEE Transactions on Robotics, 38, 2039-2052(2022).

    [5] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 82, 35-45(1960).

    [6] MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint kalman filter for vision-aided inertial navigation[C], 3565-3572(2007).

    [7] ZHANG Z C, SCARAMUZZA D. A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry[C], 7244-7251(2018).

    [8] LIU T B, SHEN S J. High altitude monocular visual-inertial state estimation: initialization and sensor fusion[C], 4544-4551(2017).

    [9] ROSINOL A, VIOLETTE A, ABATE M et al. Kimera: from SLAM to spatial perception with 3D dynamic scene graphs[J]. International Journal of Robotics Research, 40, 1510-1546(2021).

    [10] LV J J, LANG X L, XU J H et al. Continuous-time fixed-lag smoothing for LiDAR-inertial-camera SLAM[J]. IEEE/ASME Transactions on Mechatronics, 28, 2259-2270(2023).

    [11] LEUTENEGGER S, FURGALE P, RABAUD V et al. Keyframe-based visual-inertial SLAM using nonlinear optimization[C](2013).

    [12] PATRON-PEREZ A, LOVEGROVE S, SIBLEY G. A spline-based trajectory representation for sensor fusion and rolling shutter cameras[J]. International Journal of Computer Vision, 113, 208-219(2015).

    [13] VON STUMBERG L, CREMERS D. DM-VIO: delayed marginalization visual-inertial odometry[J]. IEEE Robotics and Automation Letters, 7, 1408-1415(2022).

    [14] XU L, YIN H S, SHI T et al. EPLF-VINS: real-time monocular visual-inertial SLAM with efficient point-line flow features[J]. IEEE Robotics and Automation Letters, 8, 752-759(2023).

    [15] QIN T, LI P L, SHEN S J. VINS-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 34, 1004-1020(2018).

    [16] LISO L, SANDSTRÖM E, YUGAY V et al. Loopy-SLAM: dense neural SLAM with loop closures[C], 20363-20373(2024).

    [17] ZHANG Y M, TOSI F, MATTOCCIA S et al. GO-SLAM: Global optimization for consistent 3D instant reconstruction[C], 3704-3714(2023).

    [18] USENKO V, DEMMEL N, SCHUBERT D et al. Visual-inertial mapping with non-linear factor recovery[J]. IEEE Robotics and Automation Letters, 5, 422-429(2020).

    [19] CHEN C H, WANG B, LU C X et al. Deep learning for visual localization and mapping: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 35, 17000-17020(2024).

    [20] RAMBACH J R, TEWARI A, PAGANI A et al. Learning to fuse: a deep learning approach to visual-inertial camera pose estimation[C], 71-76(2016).

    [21] CLARK R, WANG S, WEN H K et al. VINet: visual-inertial odometry as a sequence-to-sequence learning problem[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 31, 3995-4001(2017).

    [22] PENG X F, LIU Z H, LI W M et al. DVI-SLAM: A dual visual inertial SLAM network[C], 12020-12026(2024).

    [23] CONCHA A, CIVERA J. DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence[C], 5686-5693(2015).

    [24] SHU F W, WANG J X, PAGANI A et al. Structure PLP-SLAM: efficient sparse mapping and localization using point, line and plane for monocular, RGB-D and stereo cameras[C], 2105-2112(2023).

    [25] HUA M D, MANERIKAR N, HAMEL T et al. Attitude, linear velocity and depth estimation of a camera observing a planar target using continuous homography and inertial data[C], 1429-1435(2018).

    [26] 付漫侠, 周水生. 基于融合Lasso的非参数加性分位数回归模型[J]. 模式识别与人工智能, 37, 58-72(2024).

         FU M X, ZHOU S S. Nonparametric additive quantile regression model based on fused lasso[J]. Pattern Recognition and Artificial Intelligence, 37, 58-72(2024).

    [27] 雷大江[M]. 分布式机器学习: 交替方向乘子法在机器学习中的应用, 12-23(2021).

         LEI D J[M]. Distributed Machine Learning, 12-23(2021).

    [28] RUBLEE E, RABAUD V, KONOLIGE K et al. ORB: an efficient alternative to SIFT or SURF[C], 2564-2571(2011).

    [29] GAO X, ZHANG T, LIU Y et al[M]. Fourteen Lectures on Visual Slam: from Theory to Practice, 37-81(2019).

         高翔, 张涛, 刘毅[M]. 视觉SLAM十四讲: 从理论到实践, 37-81(2019).

    [30] LEE D T, SCHACHTER B J. Two algorithms for constructing a delaunay triangulation[J]. International Journal of Computer & Information Sciences, 9, 219-242(1980).

    [31] CALONDER M, LEPETIT V, STRECHA C et al[M]. BRIEF: Binary Robust Independent Elementary Features, 778-792(2010).

    [32] GALVEZ-LÓPEZ D, TARDOS J D. Bags of binary words for fast place recognition in image sequences[J]. IEEE Transactions on Robotics, 28, 1188-1197(2012).

    [33] BURRI M, NIKOLIC J, GOHL P et al. The EuRoC micro aerial vehicle datasets[J]. The International Journal of Robotics Research, 35, 1157-1163(2016).

    [34] SCHUBERT D, GOLL T, DEMMEL N et al. The TUM VI benchmark for evaluating visual-inertial odometry[C], 1680-1687(2018).

    [35] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]. RI, 3354-3361(2012).

    Tools

    Get Citation

    Copy Citation Text

    Yehu SHEN, Yifan HE, Jikun WEI, Daqing ZHANG. A visual inertial SLAM system based on key planes with heterogeneous feature fusion[J]. Optics and Precision Engineering, 2025, 33(8): 1259

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 9, 2024

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email: Yifan HE (heyifan@reconova.com)

    DOI:10.37188/OPE.20253308.1259

    Topics