Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1215002(2023)
Multiple Workpiece Grasping Point Localization Method Based on Deep Learning
Fig. 2. Chart of target example angle change. (a) Image before scaling; (b) scaled image
Fig. 5. Schematic diagrams of feature refinement stage. (a) Schematic diagram of feature reconstruction; (b) bilinear interpolation
Fig. 7. Schematic diagram of ordinary convolutional layer and Ghost module calculation
Fig. 10. Workpiece detection result graphs of different algorithms. (a) CAD-Net; (b) R3Det; (c) Gliding vertex; (d) GB-FRN-YOLOv5
Fig. 11. Comparison of two models. (a) Test plots of model D; (b) test plots of model E
Fig. 12. Cropping schematic of two detection methods. (a) (b) Detection map and image cropping of YOLOv5;(c) (d) detection map and image cropping of GB-FRN-YOLOv5
Fig. 13. Image processing to obtain workpiece centroid. (a) Original image; (b) grayscale; (c) median filtering; (d) binarization; (e) inversion of binarization; (f) centroid calculation
|
|
|
Get Citation
Copy Citation Text
Guanglin An, Zonggang Li, Yajiang Du, Huifeng Kang. Multiple Workpiece Grasping Point Localization Method Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1215002
Category: Machine Vision
Received: Mar. 2, 2022
Accepted: Jun. 13, 2022
Published Online: Jun. 5, 2023
The Author Email: Zonggang Li (lizongg@126.com)