Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1215002(2023)

Multiple Workpiece Grasping Point Localization Method Based on Deep Learning

Guanglin An1,2, Zonggang Li1,2、*, Yajiang Du1,2, and Huifeng Kang3
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • 2Robot Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • 3College of Aerospace Engineering, North China Institute of Aerospace Engineering, Langfang 065000, Hebei, China
  • show less
    Figures & Tables(16)
    Network structure of improved GB-FRN-YOLOv5
    Chart of target example angle change. (a) Image before scaling; (b) scaled image
    Schematic diagram of definition of rotating frame
    Schematic diagram of feature unaligned
    Schematic diagrams of feature refinement stage. (a) Schematic diagram of feature reconstruction; (b) bilinear interpolation
    Module of Ghost bottleneck
    Schematic diagram of ordinary convolutional layer and Ghost module calculation
    Feature map of attentional multiscale
    Training loss function of improved GB-FRN-YOLOv5 model
    Workpiece detection result graphs of different algorithms. (a) CAD-Net; (b) R3Det; (c) Gliding vertex; (d) GB-FRN-YOLOv5
    Comparison of two models. (a) Test plots of model D; (b) test plots of model E
    Cropping schematic of two detection methods. (a) (b) Detection map and image cropping of YOLOv5;(c) (d) detection map and image cropping of GB-FRN-YOLOv5
    Image processing to obtain workpiece centroid. (a) Original image; (b) grayscale; (c) median filtering; (d) binarization; (e) inversion of binarization; (f) centroid calculation
    • Table 1. Hardware configuration and model parameters

      View table

      Table 1. Hardware configuration and model parameters

      NameConfigurationTraining parameterParameter value
      GPUGeForce RTX 2080tiWarmup_epochs5.0
      CPUIntel(R)Xeon(R)CPUE52680 v2Warmup_momentum0.95
      CUDA10.1Learning rate0.01
      CuDNN7.6.5Weight decay0.001
    • Table 2. Experimental result comparison of GB-FRN-YOLOV5 algorithm and other detection algorithms

      View table

      Table 2. Experimental result comparison of GB-FRN-YOLOV5 algorithm and other detection algorithms

      Detection algorithmAccuracy of detection for each type of target AP /%mAP /%FPS
      boltkitbushingcrossboltbucklesupportplate
      YOLOv588.2184.1483.6785.2387.2190.7886.5465.16
      CAD-Net84.4181.3482.4286.6586.1591.0785.3458.46
      R3Det83.6581.2480.1385.2585.3389.6684.2160.51
      Gliding vertex87.7885.2684.0286.6688.1391.5987.2463.26
      GB-FRN-YOLOv590.8590.5590.8490.8290.7990.9090.7971.43
    • Table 3. Effect of different modules on detection performance

      View table

      Table 3. Effect of different modules on detection performance

      ModelsABCDE
      YOLOV5
      FRN
      Data pre-processing module
      Ghost bottleneck
      Attention mechanism
      mAP /%86.5488.1388.5688.7590.79
      FPS65.1663.9563.4172.1671.43
    Tools

    Get Citation

    Copy Citation Text

    Guanglin An, Zonggang Li, Yajiang Du, Huifeng Kang. Multiple Workpiece Grasping Point Localization Method Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1215002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 2, 2022

    Accepted: Jun. 13, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Zonggang Li (lizongg@126.com)

    DOI:10.3788/LOP220857

    Topics