Acta Optica Sinica, Volume. 43, Issue 15, 1524001(2023)

Multi-Dimensional Light Field Manipulation by Metasurfaces and Holographic Display Technology

Xin Li1,2,3, Shifei Zhang1, Xiaotong Zhang1, Jingyu Yang1, Longhao Zheng1, Lingling Huang1、*, and Yongtian Wang1、**
Author Affiliations
  • 1Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 3Key Laboratory of Photonics Information Technology, Ministry of Industry and Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(139)

    [1] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).

    [3] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [4] Camacho-Morales R, Rahmani M, Kruk S et al. Nonlinear generation of vector beams from AlGaAs nanoantennas[J]. Nano Letters, 16, 7191-7197(2016).

    [5] Zhu H L, Cheung S W, Chung K L et al. Linear-to-circular polarization conversion using metasurface[J]. IEEE Transactions on Antennas and Propagation, 61, 4615-4623(2013).

    [6] Ullah N, Zhao R Z, Huang L L. Recent advancement in optical metasurface: fundament to application[J]. Micromachines, 13, 1025(2022).

    [7] Jin G F, Zhang H, Su P[M]. Computational mechanism hologram(2020).

    [8] Zhang T Y, Huang L L, Li X W et al. High-efficiency broadband polarization converter based on Ω-shaped metasurface[J]. Journal of Physics D, 50, 454001(2017).

    [9] Li T Y, Huang L L, Liu J et al. Tunable wave plate based on active plasmonic metasurfaces[J]. Optics Express, 25, 4216-4226(2017).

    [10] Zhao R Z, Huang L L, Tang C C et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces[J]. Advanced Optical Materials, 6, 1800490(2018).

    [11] Zhang X E, Li X, Zhou H Q et al. Multifocal plane display based on dual polarity stereoscopic metasurface[J]. Advanced Functional Materials, 32, 2209460(2022).

    [12] Frese D, Wei Q S, Wang Y T et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Letters, 19, 3976-3980(2019).

    [13] Yue F Y, Zhang C M, Zang X F et al. High-resolution grayscale image hidden in a laser beam[J]. Light: Science & Applications, 7, 17129(2018).

    [14] Bao Y J, Nan F, Yan J H et al. Observation of full-parameter Jones matrix in bilayer metasurface[J]. Nature Communications, 13, 7550(2022).

    [15] Rubin N A, Zaidi A, Juhl M et al. Polarization state generation and measurement with a single metasurface[J]. Optics Express, 26, 21455-21478(2018).

    [16] Rubin N A, D’Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [17] Song X, Huang L L, Tang C C et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 6, 1701181(2018).

    [18] Wang Q H, Ni P N, Xie Y Y et al. On-chip generation of structured light based on metasurface optoelectronic integration[J]. Laser & Photonics Reviews, 15, 2000385(2021).

    [19] Lin Z M, Li X W, Zhao R Z et al. High-efficiency Bessel beam array generation by Huygens metasurfaces[J]. Nanophotonics, 8, 1079-1085(2019).

    [20] Ni Y B, Chen S, Wang Y J et al. Metasurface for structured light projection over 120° field of view[J]. Nano Letters, 20, 6719-6724(2020).

    [21] Li Z L, Dai Q, Mehmood M Q et al. Full-space cloud of random points with a scrambling metasurface[J]. Light: Science & Applications, 7, 63(2018).

    [22] Zhang X E, Huang L L, Zhao R Z et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces[J]. Laser & Photonics Reviews, 16, 2100451(2022).

    [23] Huang L L, Song X, Reineke B et al. Volumetric generation of optical vortices with metasurfaces[J]. ACS Photonics, 4, 338-346(2017).

    [24] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 32, 1905659(2020).

    [25] Tsesses S, Ostrovsky E, Cohen K et al. Optical skyrmion lattice in evanescent electromagnetic fields[J]. Science, 361, 993-996(2018).

    [26] Deng Z L, Shi T, Krasnok A et al. Observation of localized magnetic plasmon skyrmions[J]. Nature Communications, 13, 8(2022).

    [27] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).

    [28] Lei S W, Zhang X, Zhu S Q et al. Generation of Airy beam arrays in real and K spaces based on a dielectric metasurface[J]. Optics Express, 29, 18781-18790(2021).

    [29] Li Z, Liu W W, Geng G Z et al. Multiplexed nondiffracting nonlinear metasurfaces[J]. Advanced Functional Materials, 30, 1910744(2020).

    [30] Kim G, Kim Y, Yun J et al. Metasurface-driven full-space structured light for three-dimensional imaging[J]. Nature Communications, 13, 5920(2022).

    [31] Song X, Huang L L, Sun L et al. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface[J]. Applied Physics Letters, 112, 073104(2018).

    [32] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [33] Tan H Y, Deng J H, Zhao R Z et al. A free-space orbital angular momentum multiplexing communication system based on a metasurface[J]. Laser & Photonics Reviews, 13, 1800278(2019).

    [34] Zhang X E, Huang L L, Zhao R Z et al. Basis function approach for diffractive pattern generation with Dammann vortex metasurfaces[J]. Science Advances, 8, eabp8073(2022).

    [35] Liu Y, Li X W, Chen Y F et al. Imaging-based optical barcoding for relative humidity sensing based on meta-tip[J]. Nanophotonics, 11, 111-118(2021).

    [36] Liu Y, Chen Y F, Zhou S P et al. Fiber-optic meta-tip with multi-sensitivity resonance dips for humidity sensing[J]. Sensors and Actuators B, 352, 130957(2022).

    [37] Cai S S, Hu W H, Liu Y M et al. Optical fiber hydrogen sensor using metasurfaces composed of palladium[J]. Chinese Optics Letters, 20, 053601(2022).

    [38] Zhou H Q, Huang L L, Li X W et al. All-dielectric bifocal isotropic metalens for a single-shot hologram generation device[J]. Optics Express, 28, 21549-21559(2020).

    [39] Chen Y F, Huang L L, Liu B Y et al. Broadband achromatic metalens and meta-deflector based on integrated metasurface[J]. Journal of Physics D, 55, 025107(2022).

    [40] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).

    [41] Fan Z B, Qiu H Y, Zhang H L et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 8, 67(2019).

    [42] Zhou H Q, Li X, Ullah N et al. Single-shot phase retrieval based on anisotropic metasurface[J]. Applied Physics Letters, 120, 161702(2022).

    [43] Kwon H, Arbabi E, Kamali S M et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces[J]. Nature Photonics, 14, 109-114(2020).

    [44] Engay E, Huo D W, Malureanu R et al. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging[J]. Nano Letters, 21, 3820-3826(2021).

    [45] Yan J X, Wang Y T, Liu Y et al. Single pixel imaging based on large capacity spatial multiplexing metasurface[J]. Nanophotonics, 11, 3071-3080(2022).

    [46] Yan J X, Wei Q S, Liu Y et al. Single pixel imaging key for holographic encryption based on spatial multiplexing metasurface[J]. Small, 18, 2203197(2022).

    [47] Zhang Z B, Ma X, Zhong J G. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [48] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [49] Liu H C, Yang B A, Guo Q H et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Science Advances, 3, e1701477(2017).

    [50] Jing X L, Zhao R Z, Li X et al. Single-shot 3D imaging with point cloud projection based on metadevice[J]. Nature Communications, 13, 7842(2022).

    [51] Chen Y F, Zhao R Z, He H Y et al. Spectrum dispersion element based on the metasurface with parabolic phase[J]. Optics Express, 30, 32670-32679(2022).

    [52] Meng Y, Hu F T, Liu Z T et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization[J]. Optics Express, 27, 16425-16439(2019).

    [53] Meng Y, Liu Z T, Xie Z W et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface[J]. Photonics Research, 8, 564-576(2020).

    [54] Guo X X, Ding Y M, Chen X et al. Molding free-space light with guided wave-driven metasurfaces[J]. Science Advances, 6, eabb4142(2020).

    [55] Shi Y Y, Wan C W, Dai C J et al. Augmented reality enabled by on-chip meta-holography multiplexing[J]. Laser & Photonics Reviews, 16, 2100638(2022).

    [56] Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, e70(2013).

    [57] Song X, Huang L L, Wang Y T. Tunable multi-port surface plasmon polariton excitation with nanostructures[J]. Plasmonics, 11, 817-823(2016).

    [58] Ohana D, Desiatov B, Mazurski N et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 16, 7956-7961(2016).

    [59] Guo J S, Ye C C, Liu C Y et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon[J]. Laser & Photonics Reviews, 14, 2000058(2020).

    [60] Wang Z, Li T T, Soman A et al. On-chip wavefront shaping with dielectric metasurface[J]. Nature Communications, 10, 3547(2019).

    [61] Fu T Z, Zang Y B, Huang Y Y et al. Photonic machine learning with on-chip diffractive optics[J]. Nature Communications, 14, 70(2023).

    [62] Li T H, Liao K, Zhou H Y et al. On-chip metaline for multiport beam splitting[J]. Advanced Optical Materials, 11, 2202527(2023).

    [63] Zhou H Y, Liao K, Su Z X et al. Tunable on-chip mode converter enabled by inverse design[J]. Nanophotonics, 12, 1105-1114(2023).

    [64] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [65] Yu H, Lee K R, Park J et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields[J]. Nature Photonics, 11, 186-192(2017).

    [66] Park J, Lee K R, Park Y K. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve[J]. Nature Communications, 10, 1304(2019).

    [67] An J, Won K, Kim Y et al. Slim-panel holographic video display[J]. Nature Communications, 11, 5568(2020).

    [68] Peng Y F, Choi S, Kim J et al. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration[J]. Science Advances, 7, eabg5040(2021).

    [69] Shi L A, Li B C, Kim C et al. Towards real-time photorealistic 3D holography with deep neural networks[J]. Nature, 591, 234-239(2021).

    [70] Li Y L, Li N N, Wang D et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size[J]. Light: Science & Applications, 11, 188(2022).

    [71] Li J, Smithwick Q, Chu D P. Holobricks: modular coarse integral holographic displays[J]. Light: Science & Applications, 11, 57(2022).

    [72] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [73] Jiang Q, Hu L Y, Geng G Z et al. Arbitrary amplitude and phase control in visible by dielectric metasurface[J]. Optics Express, 30, 13530-13539(2022).

    [74] Arbabi E, Kamali S M, Arbabi A et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation[J]. ACS Photonics, 6, 2712-2718(2019).

    [75] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [76] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).

    [77] Wang E L, Niu J B, Liang Y H et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Advanced Optical Materials, 8, 1901674(2020).

    [78] Zhang S F, Huang L L, Li X et al. Dynamic display of full-Stokes vectorial holography based on metasurfaces[J]. ACS Photonics, 8, 1746-1753(2021).

    [79] Song Q H, Baroni A, Sawant R et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nature Communications, 11, 2651(2020).

    [80] Deng Z L, Deng J H, Zhuang X et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 18, 2885-2892(2018).

    [81] Bao Y J, Wen L, Chen Q et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Science Advances, 7, eabh0365(2021).

    [82] Bao Y J, Weng Q, Li B J. Conversion between arbitrary amplitude, phase, and polarization with minimal degrees of freedom of metasurface[J]. Laser & Photonics Reviews, 16, 2100280(2022).

    [83] Liu M Z, Zhu W Q, Huo P C et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states[J]. Light: Science & Applications, 10, 107(2021).

    [84] Rubin N A, Zaidi A, Dorrah A et al. Jones matrix holography with metasurfaces[J]. Science Advances, eabg7488(2021).

    [85] Xiong B, Liu Y, Xu Y H et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 379, 294-299(2023).

    [86] Zhang S F, Huang L L, Geng G Z et al. Full-Stokes polarization transformations and time sequence metasurface holographic display[J]. Photonics Research, 10, 1031-1038(2022).

    [87] Zhao R Z, Xiao X F, Geng G Z et al. Polarization and holography recording in real- and k-space based on dielectric metasurface[J]. Advanced Functional Materials, 31, 2100406(2021).

    [88] Wei Q S, Huang L L, Li X W et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 5, 1700434(2017).

    [89] Li X, Zhang X E, Zhao R Z et al. Independent light field manipulation in diffraction orders of metasurface holography[J]. Laser & Photonics Reviews, 16, 2100592(2022).

    [90] Zhao R Z, Geng G Z, Wei Q S et al. Controllable polarization and diffraction modulated multi-functionality based on metasurface[J]. Advanced Optical Materials, 10, 2102596(2022).

    [91] Zhao R Z, Li X, Geng G Z et al. Encoding arbitrary phase profiles to 2D diffraction orders with controllable polarization states[J]. Nanophotonics, 12, 155-163(2023).

    [92] Zhao R Z, Wei Q S, Li Y Z et al. Stereo Jones matrix holography with longitudinal polarization transformation[J]. Laser & Photonics Reviews, 2200982(2023).

    [93] Li X F, Chu J Q, Smithwick Q et al. Automultiscopic displays based on orbital angular momentum of light[J]. Journal of Optics, 18, 085608(2016).

    [94] Chu J Q, Li X F, Smithwick Q et al. Coding/decoding two-dimensional images with orbital angular momentum of light[J]. Optics Letters, 41, 1490-1493(2016).

    [95] Ren H R, Briere G, Fang X Y et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 10, 2986(2019).

    [96] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).

    [97] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [98] Yu P, Li J X, Li X et al. Generation of switchable singular beams with dynamic metasurfaces[J]. ACS Nano, 13, 7100-7106(2019).

    [99] Zhou H Q, Wang Y T, Li X et al. A deep learning approach for trustworthy high-fidelity computational holographic orbital angular momentum communication[J]. Applied Physics Letters, 119, 044104(2021).

    [100] Zhou H Q, Sain B, Wang Y T et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 14, 5553-5559(2020).

    [101] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light: Science & Applications, 8, 95(2019).

    [102] Deng Z L, Jin M K, Ye X A et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 30, 1910610(2020).

    [103] Shi Y Y, Wan C W, Dai C J et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection[J]. Optica, 9, 670-676(2022).

    [104] Yang R, Wan S A, Shi Y Y et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics[J]. Laser & Photonics Reviews, 16, 2200127(2022).

    [105] Wei Q S, Sain B, Wang Y T et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 19, 8964-8971(2019).

    [106] Xu Z T, Huang L L, Li X W et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Advanced Optical Materials, 8, 1901169(2020).

    [107] Frese D, Sain B, Zhou H Q et al. A wavelength and polarization selective photon sieve for holographic applications[J]. Nanophotonics, 10, 4543-4550(2021).

    [108] Zhou H Q, Li X, Xu Z T et al. Correlated triple hybrid amplitude and phase holographic encryption based on a metasurface[J]. Photonics Research, 10, 678-686(2022).

    [109] Li X, Zhao R Z, Wei Q S et al. Code division multiplexing inspired dynamic metasurface holography[J]. Advanced Functional Materials, 31, 2103326(2021).

    [110] Li X, Chen Q M, Zhang X E et al. Time-sequential color code division multiplexing holographic display with metasurface[J]. Opto-Electronic Advances, 6, 220060(2023).

    [111] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Materials Today, 21, 8-21(2018).

    [112] Ye W M, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 7, 11930(2016).

    [113] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 14, 607-612(2015).

    [114] Tymchenko M, Gomez-Diaz J S, Lee J et al. Gradient nonlinear Pancharatnam-Berry metasurfaces[J]. Physical Review Letters, 115, 207403(2015).

    [115] Frese D, Wei Q S, Wang Y T et al. Nonlinear bicolor holography using plasmonic metasurfaces[J]. ACS Photonics, 8, 1013-1019(2021).

    [116] Liu B Y, Sain B, Reineke B et al. Nonlinear wavefront control by geometric-phase dielectric metasurfaces: influence of mode field and rotational symmetry[J]. Advanced Optical Materials, 8, 1902050(2020).

    [117] Gao Y S, Fan Y B, Wang Y J et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 18, 8054-8061(2018).

    [118] Wang L, Kruk S, Koshelev K et al. Nonlinear wavefront control with all-dielectric metasurfaces[J]. Nano Letters, 18, 3978-3984(2018).

    [119] Lin Z M, Huang L L, Xu Z T et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Advanced Optical Materials, 7, 1900782(2019).

    [120] Hong X M, Hu G W, Zhao W C et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides[J]. Research, 2020, 9085782(2020).

    [121] Wang B X, Hong X M, Wang K et al. Nonlinear detour phase holography[J]. Nanoscale, 13, 2693-2702(2021).

    [122] Wang B X, Wang K, Hong X M et al. Resonant nonlinear synthetic metasurface with combined phase and amplitude modulations[J]. Laser & Photonics Reviews, 15, 2100031(2021).

    [123] Spreyer F, Zhao R Z, Huang L L et al. Second harmonic imaging of plasmonic Pancharatnam-Berry phase metasurfaces coupled to monolayers of WS2[J]. Nanophotonics, 9, 351-360(2020).

    [124] Cai X D, Tang R, Zhou H Y et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces[J]. Advanced Photonics, 3, 036003(2021).

    [125] Philip G, Wei Q S, Basudeb S et al. Optical secret sharing with cascaded metasurface holography[J]. Science Advances, 7, eabf9718(2021).

    [126] Wei Q S, Huang L L, Zhao R Z et al. Rotational multiplexing method based on cascaded metasurface holography[J]. Advanced Optical Materials, 10, 2102166(2022).

    [127] Zhou H Q, Li X, Wang H et al. Ultra-dense moving cascaded metasurface holography by using a physics-driven neural network[J]. Optics Express, 30, 24285-24294(2022).

    [128] Li S Q, Xu X W, Veetil R M et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).

    [129] Zhang Y F, Fowler C, Liang J H et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 16, 661-666(2021).

    [130] Chen P, Shen Z X, Xu C T et al. Simultaneous realization of dynamic and hybrid multiplexed holography via light-activated chiral superstructures[J]. Laser & Photonics Reviews, 16, 2270024(2022).

    [131] Li T Y, Wei Q S, Reineke B et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 27, 21153-21162(2019).

    [132] Li J X, Kamin S, Zheng G X et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 4, eaar6768(2018).

    [133] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 17, 3641-3645(2017).

    [134] Zhu S Q, Xu Z T, Zhang H et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption[J]. Optics Express, 29, 9553-9564(2021).

    [135] Zhou H Q, Wang Y T, Li X W et al. Switchable active phase modulation and holography encryption based on hybrid metasurfaces[J]. Nanophotonics, 9, 905-912(2020).

    [136] Lin Z M, Huang L L, Zhao R Z et al. Dynamic control of mode modulation and spatial multiplexing using hybrid metasurfaces[J]. Optics Express, 27, 18740-18750(2019).

    [137] Dong B W, Zhao R Z, Wei Q S et al. Terahertz switchable VO2-Au hybrid active metasurface holographic encryption[J]. Optics Express, 30, 20750-20761(2022).

    [138] Bi Y, Huang L L, Zhao R Z et al. Magnetically controllable holographic encryption based on a magneto-optical metasurface[J]. Optics Express, 30, 8366-8375(2022).

    [139] Kaissner R, Li J X, Lu W Z et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies[J]. Science Advances, 7, eabd9450(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xin Li, Shifei Zhang, Xiaotong Zhang, Jingyu Yang, Longhao Zheng, Lingling Huang, Yongtian Wang. Multi-Dimensional Light Field Manipulation by Metasurfaces and Holographic Display Technology[J]. Acta Optica Sinica, 2023, 43(15): 1524001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Mar. 29, 2023

    Accepted: May. 9, 2023

    Published Online: Aug. 3, 2023

    The Author Email: Huang Lingling (wyt@bit.edu.cn), Wang Yongtian (huanglingling@bit.edu.cn)

    DOI:10.3788/AOS230743

    Topics