Laser & Optoelectronics Progress, Volume. 60, Issue 21, 2114001(2023)

Effect of Laser Power on Temperature and Stress Fields of H13-TiC Cladding Layer

Qiuxia Fan1, Shuwang Shen1, Qianqian Zhang1、*, Yifan Qi1, Kun Lin2, and Chongxue Chen1
Author Affiliations
  • 1School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • 2Aerospace High-End Manufacturing Research Center, Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, Shaanxi, China
  • show less
    References(35)

    [1] Birger E M, Moskvitin G V, Polyakov A N et al. Industrial laser cladding: current state and future[J]. Welding International, 25, 234-243(2011).

    [2] Yao S, Liu H X, Zhang X W et al. Microstructure and wear property of TiC particle reinforced composite coatings on H13 steel surface by laser in situ synthesis[J]. Chinese Journal of Lasers, 41, 1003004(2014).

    [3] Wu W P, Wang X J, Wang Z Y et al. Laser cladding ceramic coating[J]. Journal of Ceramics, 38, 13-19(2017).

    [4] Chen T, Wu W N, Li W P et al. Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model[J]. Optics & Laser Technology, 116, 345-355(2019).

    [5] Cao J, Lu H F, Lu J Z et al. Effects of tungsten carbide particles on microstructure and wear resistance of hot-working die prepared via laser cladding[J]. Chinese Journal of Lasers, 46, 0702001(2019).

    [6] Zhu Z C, Li J F, Peng Y X et al. In-situ synthesized novel eyeball-like Al2O3/TiC composite ceramics reinforced Fe-based alloy coating produced by laser cladding[J]. Surface and Coatings Technology, 391, 125671(2020).

    [7] Li Q H, Savalani M M, Zhang Q M et al. High temperature wear characteristics of TiC composite coatings formed by laser cladding with CNT additives[J]. Surface and Coatings Technology, 239, 206-211(2014).

    [8] Yuan Q L, Feng X D, Cao J J et al. Research progress in laser cladding technology[J]. Materials Review, 24, 112-116(2010).

    [9] Heng Z, Shu L S. Effect of laser power on mechanical properties of laser cladded 27SiMn steel[J]. Chinese Journal of Lasers, 49, 0802011(2022).

    [10] Zhu H, Wu Z H, Li G et al. Study on wear failures of mining machinery[J]. Journal of China Coal Society, 31, 380-385(2006).

    [11] Tian Y Q, Liu J X, Jiang B H. Study on surface alloy cladding strengthening of roadheader pick[J]. Coal Mine Machinery, 42, 93-96(2021).

    [12] Ju J, Zhou Y, Kang M D et al. Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on 42CrMo steel roller[J]. Materials, 11, 2061(2018).

    [13] Cheng W, Wu M P, Tang Y H et al. Laser cladding process of 42CrMo surface with single-pass[J]. Laser & Optoelectronics Progress, 56, 041402(2019).

    [14] Han J T, Wu M P, Cui C. Effect of laser power on microstructure and friction and wear properties of laser clad layer on 42CrMo steel[J]. Heat Treatment of Metals, 45, 214-217(2020).

    [15] Duan C H, Hao X J, Luo X P. Study on temperature field of selective laser melting 316L[J]. Applied Laser, 38, 748-753(2018).

    [16] Li D S, Zhang J, Meng P et al. Forming characteristics of Ni+20% Cr3C2 coating by laser cladding[J]. Applied Laser, 41, 447-453(2021).

    [17] Majumdar J D, Rittinghaus S K, Wissenbach K et al. Microstructural evolution and microhardness of direct laser clad TiC dispersed titanium aluminide (Ti45Al5Nb0.5Si) alloy[J]. Procedia Manufacturing, 35, 840-846(2019).

    [18] Waqar S, Guo K, Sun J. FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel[J]. Journal of Manufacturing Processes, 66, 81-100(2021).

    [19] Zhang H Y, Yu M, Hua J W et al. Effects of Mo on microstructure and properties of Fe-Cr-Mo laser cladding layer[J]. Chinese Journal of Lasers, 48, 2202010(2021).

    [20] Rahimipour M R, Sobhani M. Evaluation of centrifugal casting process parameters for in situ fabricated functionally gradient Fe-TiC composite[J]. Metallurgical and Materials Transactions B, 44, 1120-1123(2013).

    [21] Chen H, Lu Y Y, Sun Y S et al. Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding[J]. Surface and Coatings Technology, 395, 125867(2020).

    [22] Bartkowski D, Kinal G. Microstructure and wear resistance of Stellite-6/WC MMC coatings produced by laser cladding using Yb∶YAG disk laser[J]. International Journal of Refractory Metals and Hard Materials, 58, 157-164(2016).

    [23] Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition[J]. Journal of Applied Physics, 100, 024903(2006).

    [24] Kik T. Heat source models in numerical simulations of laser welding[J]. Materials, 13, 2653(2020).

    [25] Yue J F, Dong X T, Guo R et al. Numerical simulation of equivalent heat source temperature field of asymmetrical fillet root welds[J]. International Journal of Heat and Mass Transfer, 130, 42-49(2019).

    [26] Li J H, An X J, Yao F P et al. Simulation on thermal stress cycle in laser cladding of H13 steel Ni-based coating[J]. Chinese Journal of Lasers, 48, 1002104(2021).

    [27] Fu J, Xiao B[M]. Numerical simulation of material forming process(2019).

    [28] Yong Y W, Fu W, Deng Q L et al. A comparative study of vision detection and numerical simulation for laser cladding of nickel-based alloy[J]. Journal of Manufacturing Processes, 28, 364-372(2017).

    [29] Zhu Q H, Yang K, Liang Y et al. A novel fast algorithm based on model order reduction for one class of transient nonlinear heat conduction problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 52, 124-138(2020).

    [30] Dai D P, Jiang X H, Cai J P et al. Numerical simulation of temperature field and stress distribution in Inconel718 Ni base alloy induced by laser cladding[J]. Chinese Journal of Lasers, 42, 0903005(2015).

    [31] Gu S T, Hou Y F, Chai G Z et al. Laser caldding of elasto-plastical properties of particle reinforced H13-TiC composite coatings[J]. Chinese Journal of Lasers, 38, 0603019(2011).

    [32] Li G P, Jia J X, Lü Y H et al. Effect of Mo addition mode on the microstructure and mechanical properties of TiC-high Mn steel cermets[J]. Ceramics International, 46, 5745-5752(2019).

    [33] Zhang Z Q, Yang F, Zhang T G et al. Research progress of laser cladding titanium carbide reinforced titanium-based composite coating[J]. Surface Technology, 49(2020).

    [34] Hu J P, Zhu H M, Zhang J W et al. Effects of TiC addition on microstructure, microhardness and wear resistance of 18Ni300 maraging steel by direct laser deposition[J]. Journal of Materials Processing Technology, 296, 117213(2021).

    [35] Ma C Y, Zhao D Q, Liu W Q et al. Magnetic assisted pulse electrodeposition and characterization of Ni-TiC nanocomposites[J]. Ceramics International, 46, 17631-17639(2020).

    Tools

    Get Citation

    Copy Citation Text

    Qiuxia Fan, Shuwang Shen, Qianqian Zhang, Yifan Qi, Kun Lin, Chongxue Chen. Effect of Laser Power on Temperature and Stress Fields of H13-TiC Cladding Layer[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2114001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Sep. 17, 2022

    Accepted: Oct. 24, 2022

    Published Online: Nov. 3, 2023

    The Author Email: Qianqian Zhang (zhangqianqian@sxu.edu.cn)

    DOI:10.3788/LOP222682

    Topics