Chinese Journal of Lasers, Volume. 47, Issue 8, 810002(2020)
Airborne LiDAR Point Cloud Classification Based on Multiple-Entity Eigenvector Fusion
[1] Hui Z Y. Research on some key techniques of extracting city road networks from airborne LiDAR point cloud[D]. Wuhan: China University of Geosciences(2017).
[2] Zhang X H[M]. Airborne LiDAR measure technique theory and method(2007).
[4] Zhang W M, Qi J B, Wan P et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 8, 501-523(2016).
[5] Hui Z Y, Cheng P G, Guan Y L et al. Review on airborne LiDAR point cloud filtering[J]. Laser & Optoelectronics Progress, 55, 060001(2018).
[6] Li F, Cui X M, Liu X Y et al. A semi-automatic algorithm of extracting urban road networks from airborne LiDAR point clouds[J]. Science of Surveying and Mapping, 40, 88-92(2015).
[7] Zuo Z Q, Zhang Z X, Zhang J Q. Classification of LiDAR point clouds for urban based on multi-echo region ratio and recognition topology model[J]. Chinese Journal of Lasers, 39, 0414001(2012).
[8] Brodu N, Lague D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 121-134(2012).
[9] Liu T, Su W, Wang C et al. A method of estimating maize LAI using airborne LiDAR data[J]. Journal of China Agricultural University, 21, 104-111(2016).
[10] Becker C, Rosinskaya E, Hani N et al. Classification of aerial photogrammetric 3D point clouds[J]. Photogrammetric Engineering and Remote Sensing, 84, 287-295(2018).
[11] Guo B, Huang X F, Zhang F et al. Points cloud classification using JointBoost combined with contextual information for feature reduction[J]. Acta Geodaetica et Cartographica Sinica, 42, 715-721(2013).
[12] Zhang J X, Lin X G, Ning X G. SVM-based classification of segmented airborne LiDAR point clouds in urban areas[J]. Remote Sensing, 5, 3749-3775(2013).
[13] Yue C, Liu C J, Wang X F. Classification algorithm for laser point clouds of high-steep slopes based on multi-scale dimensionality features and SVM[J]. Geomatics and Information Science of Wuhan University, 41, 882-888(2016).
[14] Sun J, Lai Z L. Airborne LiDAR feature selection for urban classification using random forests[J]. Geomatics and Information Science of Wuhan University, 39, 1310-1313(2014).
[15] Zhao C, Zhang B M, Yu D H et al. Airborne LiDAR point cloud classification using transfer learning[J]. Optics and Precision Engineering, 27, 1601-1612(2019).
[16] Yang S J, Zhang K S, Shao Y S. Classification of airborne LiDAR point cloud data based on multiscale adaptive features[J]. Acta Optica Sinica, 39, 0228001(2019).
[17] Zhao Z Y, Cheng Y L, Shi X S et al. Terrain classification of LiDAR point cloud based on multi-scale features and PointNet[J]. Laser & Optoelectronics Progress, 56, 052804(2019).
[18] Shi X S, Cheng Y L, Zhao Z Y et al. Point cloud classification algorithm based on IPTD and SVM[J]. Laser & Optoelectronics Progress, 56, 161002(2019).
[19] Tong G F, Du X C, Li Y et al. Three-dimensional point cloud classification of large outdoor scenes based on vertical slice sampling and centroid distance histogram[J]. Chinese Journal of Lasers, 45, 1004001(2018).
[20] Ni H, Lin X G, Remote Sensing, Spatial Information Sciences. XLII-, 2/W7, 837-843(2017).
[21] Zhang J X, Lin X G, Liang X L. Advances and prospects of information extraction from point clouds[J]. Acta Geodaetica et Cartographica Sinica, 46, 1460-1469(2017).
[22] Hackel T, Wegner J D, Remote Sensing, Spatial Information Sciences. III-, 3, 177-184(2016).
[23] Song D Y, Cai L L, Gu S D[J]. Color point cloud classification of mine surface based on color space Bulletin of Surveying and Mapping, 2019, 56-60.
[24] Smith A R. Color gamut transform pairs. [C]//Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1978, August 23-25, 1978, Atlanta, GA, USA. New York: ACM, 12-19(1978).
[25] Xiong Y, Gao R Q, Xu Z Y. Random forest method for dimension reduction and point cloud classification based on airborne LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 47, 508-518(2018).
[26] Cai Z, Ma H C, Zhang L. Model transfer-based filtering for airborne LiDAR data with emphasis on active learning optimization[J]. Remote Sensing Letters, 9, 111-120(2018).
Get Citation
Copy Citation Text
Hu Haiying, Hui Zhenyang, Li Na. Airborne LiDAR Point Cloud Classification Based on Multiple-Entity Eigenvector Fusion[J]. Chinese Journal of Lasers, 2020, 47(8): 810002
Category: remote sensing and sensor
Received: Nov. 20, 2019
Accepted: --
Published Online: Aug. 17, 2020
The Author Email: Zhenyang Hui (huizhenyang2008@163.com)