Chinese Journal of Lasers, Volume. 47, Issue 8, 810002(2020)

Airborne LiDAR Point Cloud Classification Based on Multiple-Entity Eigenvector Fusion

Hu Haiying1,2, Hui Zhenyang1,2、*, and Li Na1,2
Author Affiliations
  • 1Key laboratory of Digital Land and Resources, East China University of Technology, Nanchang, Jiangxi 330013, China
  • 2Faculty of Geomatics, East China University of Technology, Nanchang, Jiangxi 330013, China
  • show less
    Figures & Tables(13)
    Flow chart of point cloud classification
    Flow chart of extraction of object entities
    Diagram of extraction of object entities. (a) Raw data; (b) data after extraction of object entities
    Rasterization of building point cloud. (a) Projection of building point cloud; (b) rasterization result when grid size is 0.5 m; (c) rasterization result when grid size is 1 m
    Diagram of maximum bounding rectangles of building point cloud before and after rotation. (a) Building point cloud projection; (b) building point cloud projection after rotation
    Diagram of experimental data. (a) Ankeny; (b) diagram of artificial classification of Ankeny; (c) Building; (d) diagram of artificial classification of Building; (e) Cadastre; (f) diagram of artificial classification of Cadastre
    Classification errors using different eigenvector sets
    • Table 1. Eigenvector size based on eigenvalues

      View table

      Table 1. Eigenvector size based on eigenvalues

      EigenvectorSize
      LinearityV1=(λ12)1
      PlanarityV2=(λ23)1
      ScatterV3=λ31
      AnisotropyV4=(λ13)1
      EigenentropyV5=-i'=13λi'×ln(λi')
      OmnivarianceV6=λ1×λ2×λ33
      Surface variationV7=λ3
    • Table 2. Eigenvector size based on elevation information

      View table

      Table 2. Eigenvector size based on elevation information

      EigenvectorSize
      Height aboveV8=zmax(pi)-zp
      Height belowV9=zp-zmin(pi)
      Height averageV10=i=1kz(pi)k
      Vertical RangeV11=zmax(pi)-zmin(pi)
      Height standarddeviationV12=1ki=1kzpi)-V10]2
      Height kurtosisV13=i=1kzpi)-V10]3i=1kzpi)-V10]232
      Height skewnessV14=i=1kzpi)-V10]4i=1kzpi)-V10]22-3
    • Table 3. Eigenvector size based on surface information

      View table

      Table 3. Eigenvector size based on surface information

      EigenvectorSize
      Plane roughnessV15=|A0x0+B0y0+C0z0+D0|A02+B02+C02
      Plane rangeV16=max(D'i)
      Plane standard deviationV17=1ki=1k(D'i-D̅')2
    • Table 4. Evaluation index values of three classification methods based on Ankeny

      View table

      Table 4. Evaluation index values of three classification methods based on Ankeny

      CategoryRecall /%Precision /%F1 score /%
      RFSVMBPRFSVMBPRFSVMBP
      Ground96.2896.4411.9385.0784.6547.130.900.900.19
      High vegetation44.7043.3495.0883.5778.7478.620.580.560.86
      Building97.3897.51081.4280.0000.890.880
      Road67.8064.400.0195.4996.721.830.790.770
      Car60.7651.7799.2450.8758.3049.130.550.550.66
      Human-made object21.8816.061.0936.6839.765.990.270.230.02
      Mean64.8061.5934.5672.1873.0330.450.660.650.29
    • Table 5. Evaluation index values of three classification methods based on Building

      View table

      Table 5. Evaluation index values of three classification methods based on Building

      CategoryRecall /%Precision /%F1 score /%
      RFSVMBPRFSVMBPRFSVMBP
      Ground72.7173.6090.7288.8087.1676.860.800.800.83
      High vegetation87.8576.4937.7371.5973.7160.560.790.750.46
      Building91.8897.172.0394.8884.5218.720.930.900.04
      Road97.9797.9869.7489.4290.3318.170.930.940.29
      Car50.927.1830.0454.6960.4578.750.530.130.43
      Human-made object5.430013.00000.0800
      Mean67.7958.7438.3768.7366.0342.180.680.590.34
    • Table 6. Evaluation index values of three classification methods based on Cadastre

      View table

      Table 6. Evaluation index values of three classification methods based on Cadastre

      CategoryRecall /%Precision /%F1 score /%
      RFSVMBPRFSVMBPRFSVMBP
      Ground75.8774.762.3289.6991.507.940.820.820.04
      High vegetation82.4680.9465.6867.3470.1659.140.740.750.62
      Building86.8784.27055.7248.2300.680.610
      Road77.5379.7510.3490.8087.1515.300.840.830.12
      Car7.72063.2655.900.0029.300.1400.40
      Human-made object8.520.674.7210.54100.009.140.090.010.06
      Mean56.4953.4024.3961.6766.1720.140.550.510.21
    Tools

    Get Citation

    Copy Citation Text

    Hu Haiying, Hui Zhenyang, Li Na. Airborne LiDAR Point Cloud Classification Based on Multiple-Entity Eigenvector Fusion[J]. Chinese Journal of Lasers, 2020, 47(8): 810002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Nov. 20, 2019

    Accepted: --

    Published Online: Aug. 17, 2020

    The Author Email: Zhenyang Hui (huizhenyang2008@163.com)

    DOI:10.3788/CJL202047.0810002

    Topics