Chinese Journal of Lasers, Volume. 50, Issue 15, 1507101(2023)

Imaging Technologies for Oral Cancer Screening and Diagnosis and Their Development Trends

Yanmei Liang1、*, Zihan Yang1, Jianwei Shang2, Chenlu Liu3, and Jun Zhang4
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Tianjin 300350, China
  • 2Department of Oral Pathology, Tianjin Stomatological Hospital, Department of Oral Pathology, Hospital of Stomatology, Nankai University, Tianjin 300041, China
  • 3Department of Oral Medicine, Tianjin Stomatological Hospital, Department of Oral Medicine, Hospital of Stomatology, Nankai University, Tianjin 300041, China
  • 4Department of Oral-Maxillofacial Surgery, Tianjin Stomatological Hospital, Department of Oral-Maxillofacial Surgery, Hospital of Stomatology Nankai University, Tianjin 300041, China
  • show less
    References(113)

    [1] Chen Q M[M]. Oral mucosa(2015).

    [2] Cate A J T, Nanci A[M]. Ten Cate’s oral histology: development, structure, and function(2016).

    [3] Warnakulasuriya S, Greenspan J S[M]. Textbook of oral cancer: prevention, diagnosis and management(2020).

    [4] Xie L, Shang Z J. Burden of oral cancer in Asia from 1990 to 2019: estimates from the global burden of disease 2019 study[J]. PLoS One, 17, e0265950(2022).

    [5] Sridharan G, Shankar A A. Toluidine blue: a review of its chemistry and clinical utility[J]. Journal of Oral and Maxillofacial Pathology: JOMFP, 16, 251-255(2012).

    [6] Hohlweg-Majert B, Deppe H, Metzger M C et al. Sensitivity and specificity of oral brush biopsy[J]. Cancer Investigation, 27, 293-297(2009).

    [7] Bisht S R, Mishra P, Yadav D et al. Current and emerging techniques for oral cancer screening and diagnosis: a review[J]. Progress in Biomedical Engineering, 3, 042003(2021).

    [8] Donahue J, Wintermark M. Perfusion CT and acute stroke imaging: foundations, applications, and literature review[J]. Journal of Neuroradiology, 42, 21-29(2015).

    [9] Muraki A S, Mancuso A A, Harnsberger H R et al. CT of the oropharynx, tongue base, and floor of the mouth: normal anatomy and range of variations, and applications in staging carcinoma[J]. Radiology, 148, 725-731(1983).

    [10] Brockenbrough J M, Petruzzelli G J, Lomasney L. DentaScan as an accurate method of predicting mandibular invasion in patients with squamous cell carcinoma of the oral cavity[J]. Archives of Otolaryngology-Head & Neck Surgery, 129, 113-117(2003).

    [11] Nae A, O’Leary G, Feeley L et al. Utility of CT and MRI in assessment of mandibular involvement in oral cavity cancer[J]. World Journal of Otorhinolaryngology-Head and Neck Surgery, 5, 71-75(2019).

    [12] Muhanna N, Chan H H L, Douglas C M et al. Sentinel lymph node mapping using ICG fluorescence and cone beam CT-a feasibility study in a rabbit model of oral cancer[J]. BMC Medical Imaging, 20, 106(2020).

    [13] Linz C, Müller-Richter U D A, Buck A K et al. Performance of cone beam computed tomography in comparison to conventional imaging techniques for the detection of bone invasion in oral cancer[J]. International Journal of Oral and Maxillofacial Surgery, 44, 8-15(2015).

    [14] Chin S Y, Kadir K, Ibrahim N et al. Correlation and accuracy of contrast-enhanced computed tomography in assessing depth of invasion of oral tongue carcinoma[J]. International Journal of Oral and Maxillofacial Surgery, 50, 718-724(2021).

    [15] Qureshi T A, Wasif M, Awan M S et al. Role of contrast enhanced computed tomography in assessing cervical lymph node metastases in oral cavity squamous cell carcinoma[J]. The Journal of the Pakistan Medical Association, 71, 826-829(2021).

    [16] Budinger T F, Bird M D. MRI and MRS of the human brain at magnetic fields of 14T to 20T: technical feasibility, safety, and neuroscience horizons[J]. NeuroImage, 168, 509-531(2018).

    [17] Dammann F, Horger M, Mueller-Berg M et al. Rational diagnosis of squamous cell carcinoma of the head and neck region: comparative evaluation of CT, MRI, and 18FDG PET[J]. AJR. American Journal of Roentgenology, 184, 1326-1331(2005).

    [18] van den Brekel M W M, Runne R W, Smeele L E et al. Assessment of tumour invasion into the mandible: the value of different imaging techniques[J]. European Radiology, 8, 1552-1557(1998).

    [19] Park J O, Jung S L, Joo Y H et al. Diagnostic accuracy of magnetic resonance imaging (MRI) in the assessment of tumor invasion depth in oral/oropharyngeal cancer[J]. Oral Oncology, 47, 381-386(2011).

    [20] Lam P, Au-Yeung K M, Cheng P W et al. Correlating MRI and histologic tumor thickness in the assessment of oral tongue cancer[J]. American Journal of Roentgenology, 182, 803-808(2004).

    [21] Tang W Q, Wang Y, Yuan Y et al. Assessment of tumor depth in oral tongue squamous cell carcinoma with multiparametric MRI: correlation with pathology[J]. European Radiology, 32, 254-261(2022).

    [22] Paiva R R, Figueiredo P T, Leite A F et al. Oral cancer staging established by magnetic resonance imaging[J]. Brazilian Oral Research, 25, 512-518(2011).

    [23] Mourad M A F, Higazi M M. MRI prognostic factors of tongue cancer: potential predictors of cervical lymph nodes metastases[J]. Radiology and Oncology, 53, 49-56(2019).

    [24] Imaizumi A, Yoshino N, Yamada I et al. A potential pitfall of MR imaging for assessing mandibular invasion of squamous cell carcinoma in the oral cavity[J]. American Journal of Neuroradiology, 27, 114-122(2006).

    [25] Bolzoni A, Cappiello J, Piazza C et al. Diagnostic accuracy of magnetic resonance imaging in the assessment of mandibular involvement in oral-oropharyngeal squamous cell carcinoma: a prospective study[J]. Archives of Otolaryngology-Head & Neck Surgery, 130, 837-843(2004).

    [26] Klein Nulent T J W, Noorlag R, Van Cann E M et al. Intraoral ultrasonography to measure tumor thickness of oral cancer: a systematic review and meta-analysis[J]. Oral Oncology, 77, 29-36(2018).

    [27] Baek C H, Son Y I, Jeong H S et al. Intraoral sonography-assisted resection of T1-2 tongue cancer for adequate deep resection[J]. Otolaryngology-Head and Neck Surgery, 139, 805-810(2008).

    [28] Kodama M, Khanal A, Habu M et al. Ultrasonography for intraoperative determination of tumor thickness and resection margin in tongue carcinomas[J]. Journal of Oral and Maxillofacial Surgery, 68, 1746-1752(2010).

    [29] Helbig M, Flechtenmacher C, Hansmann J et al. Intraoperative B-mode endosonography of tongue carcinoma[J]. Head & Neck, 23, 233-237(2001).

    [30] Tarabichi O, Kanumuri V, Juliano A F et al. Intraoperative ultrasound in oral tongue cancer resection: feasibility study and early outcomes[J]. Otolaryngology-Head and Neck Surgery, 158, 645-648(2018).

    [31] Tarabichi O, Bulbul M G, Kanumuri V V et al. Utility of intraoral ultrasound in managing oral tongue squamous cell carcinoma: systematic review[J]. The Laryngoscope, 129, 662-670(2019).

    [32] Angelelli G, Moschetta M, Limongelli L et al. Endocavitary sonography of early oral cavity malignant tumors[J]. Head & Neck, 39, 1349-1356(2017).

    [33] Bulbul M G, Tarabichi O, Parikh A S et al. The utility of intra-oral ultrasound in improving deep margin clearance of oral tongue cancer resections[J]. Oral Oncology, 122, 105512(2021).

    [34] Almairac F, Fontaine D, Demarcy T et al. Motor cortex neurovascular coupling: inputs from ultra-high-frequency ultrasound imaging in humans[J]. Journal of Neurosurgery, 131, 1632-1638(2018).

    [35] Raffin D, Zaragoza J, Georgescou G et al. High-frequency ultrasound imaging for cutaneous neurofibroma in patients with neurofibromatosis type I[J]. European Journal of Dermatology, 27, 260-265(2017).

    [36] Viviano S L, Chandler L K, Keith J D. Ultrahigh frequency ultrasound imaging of the hand: a new diagnostic tool for hand surgery[J]. Hand, 13, 720-725(2018).

    [37] Izzetti R, Vitali S, Aringhieri G et al. The efficacy of ultra-high frequency ultrasonography in the diagnosis of intraoral lesions[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 129, 401-410(2020).

    [38] Ding S W, Xiong P, Zuo J X. Value of contrast-enhanced ultrasound in predicting early lymph-node metastasis in oral cancer[J]. Dento Maxillo Facial Radiology, 51, 20210293(2022).

    [39] Wei T, Lu M, Wang L et al. Contrast-enhanced ultrasound guided transoral core needle biopsy: a novel, safe and well-tolerated procedure for obtaining high-quality tissue in patients with oral cancer[J]. Ultrasound in Medicine & Biology, 46, 3210-3217(2020).

    [40] Aggarwal A, Daniel M J, Singh S et al. Nodal vascularity as an indicator of cervicofacial metastasis in oral cancer: a Doppler sonographic study[J]. Nigerian Medical Journal, 55, 299-305(2014).

    [41] Rebol J, Brkljacić B, Bumber Z et al. 3D power Doppler analysis of the vascularisation in tumours of the oral cavity[J]. Ultraschall in Der Medizin, 28, 40-44(2007).

    [42] Dangore-Khasbage S, Degwekar S S, Bhowate R R et al. Utility of color Doppler ultrasound in evaluating the status of cervical lymph nodes in oral cancer[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 108, 255-263(2009).

    [43] Kagawa T, Yuasa K, Fukunari F et al. Quantitative evaluation of vascularity within cervical lymph nodes using Doppler ultrasound in patients with oral cancer: relation to lymph node size[J]. Dento Maxillo Facial Radiology, 40, 415-421(2011).

    [44] Sanderson M J, Smith I, Parker I et al. Fluorescence microscopy[J]. Cold Spring Harbor Protocols, 2014, 071795(2014).

    [45] Balasubramaniam A M, Sriraman R, Sindhuja P et al. Autofluorescence based diagnostic techniques for oral cancer[J]. Journal of Pharmacy & Bioallied Sciences, 7, S374-S377(2015).

    [46] Mehrotra R, Singh M, Thomas S et al. A cross-sectional study evaluating chemiluminescence and autofluorescence in the detection of clinically innocuous precancerous and cancerous oral lesions[J]. The Journal of the American Dental Association, 141, 151-156(2010).

    [47] Scheer M, Neugebauer J, Derman A et al. Autofluorescence imaging of potentially malignant mucosa lesions[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 111, 568-577(2011).

    [48] Awan K H, Morgan P R, Warnakulasuriya S. Evaluation of an autofluorescence based imaging system (VELscopeTM) in the detection of oral potentially malignant disorders and benign keratoses[J]. Oral Oncology, 47, 274-277(2011).

    [49] Poh C F, Zhang L W, Anderson D W et al. Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients[J]. Clinical Cancer Research, 12, 6716-6722(2006).

    [50] Amirchaghmaghi M, Mohtasham N, Delavarian Z et al. The diagnostic value of the native fluorescence visualization device for early detection of premalignant/malignant lesions of the oral cavity[J]. Photodiagnosis and Photodynamic Therapy, 21, 19-27(2018).

    [51] Morikawa T, Shibahara T, Nomura T et al. Non-invasive early detection of oral cancers using fluorescence visualization with optical instruments[J]. Cancers, 12, 2771(2020).

    [52] Stubbs V C, Jaffe S, Rajasekaran K et al. Intraoperative imaging with second window indocyanine green for head and neck lesions and regional metastasis[J]. Otolaryngology-Head and Neck Surgery, 161, 539-542(2019).

    [53] Chen H M, Yu C H, Lin H P et al. 5-aminolevulinic acid-mediated photodynamic therapy for oral cancers and precancers[J]. Journal of Dental Sciences, 7, 307-315(2012).

    [54] Chang S F, Yang Y T, Li W L et al. Enhancement of 5-aminolevulinic acid-induced photodynamic therapy by a bioadhesive polymer[J]. Journal of Dental Sciences, 5, 30-35(2010).

    [55] Baeten J, Johnson A, Sunny S et al. Chairside molecular imaging of aberrant glycosylation in subjects with suspicious oral lesions using fluorescently labeled wheat germ agglutinin[J]. Head & Neck, 40, 292-301(2018).

    [56] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [57] Wang X D, Pang Y J, Ku G et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnology, 21, 803-806(2003).

    [58] Kalva S K, Dean-Ben X L, Razansky D. Single-sweep volumetric optoacoustic tomography of whole mice[J]. Photonics Research, 9, 899-908(2021).

    [59] Gargiulo S, Albanese S, Mancini M. State-of-the-art preclinical photoacoustic imaging in oncology: recent advances in cancer theranostics[J]. Contrast Media & Molecular Imaging, 2019, 5080267(2019).

    [60] Valluru K S, Willmann J K. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 35, 267-280(2016).

    [61] Liu C, Chen J B, Zhang Y C et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 3, 016002(2021).

    [62] Fatakdawala H, Poti S, Zhou F F et al. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques[J]. Biomedical Optics Express, 4, 1724-1741(2013).

    [63] Guo H, Qi W Z, He M et al. Co-registered photoacoustic and ultrasound imaging for tongue cancer detection[J]. Journal of Innovative Optical Health Sciences, 11, 1850008(2018).

    [64] Jin T, Guo H, Jiang H B et al. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging[J]. Optics Letters, 42, 4434-4437(2017).

    [65] Chen Q, Guo H, Jin T et al. Ultracompact high-resolution photoacoustic microscopy[J]. Optics Letters, 43, 1615-1618(2018).

    [66] Jin T, Guo H, Yao L et al. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms[J]. Journal of Biophotonics, 11, e201700250(2018).

    [67] Zhang W Y, Ma H G, Cheng Z W et al. High-speed dual-view photoacoustic imaging pen[J]. Optics Letters, 45, 1599-1602(2020).

    [68] Schmitt J M. Optical coherence tomography (OCT): a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 1205-1215(1999).

    [69] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [70] Shi G H, Dai Y, Wang L et al. Adaptive optics optical coherence tomography for retina imaging[J]. Chinese Optics Letters, 6, 424-425(2008).

    [71] Yonetsu T, Bouma B E, Kato K et al. Optical coherence tomography-15 years in cardiology[J]. Circulation Journal, 77, 1933-1940(2013).

    [72] Tsai T H, Leggett C L, Trindade A J et al. Optical coherence tomography in gastroenterology: a review and future outlook[J]. Journal of Biomedical Optics, 22, 121716(2017).

    [73] Matheny E S, Hanna N M, Reza Mina-Araghi M D et al. Optical coherence tomography of malignancy in hamster cheek pouches[J]. Journal of Biomedical Optics, 9, 978-981(2004).

    [74] Wilder-Smith P, Jung W G, Brenner M et al. In vivo optical coherence tomography for the diagnosis of oral malignancy[J]. Lasers in Surgery and Medicine, 35, 269-275(2004).

    [75] Wilder-Smith P, Hammer-Wilson M J, Zhang J et al. In vivo imaging of oral mucositis in an animal model using optical coherence tomography and optical Doppler tomography[J]. Clinical Cancer Research, 13, 2449-2454(2007).

    [76] Jung W, Zhang J, Chung J et al. Advances in oral cancer detection using optical coherence tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 811-817(2005).

    [77] Tsai M T, Lee H C, Lee C K et al. Effective indicators for diagnosis of oral cancer using optical coherence tomography[J]. Optics Express, 16, 15847-15862(2008).

    [78] Lee C K, Chi T T, Wu C T et al. Diagnosis of oral precancer with optical coherence tomography[J]. Biomedical Optics Express, 3, 1632-1646(2012).

    [79] Tsai M T, Lee H C, Lu C W et al. Delineation of an oral cancer lesion with swept-source optical coherence tomography[J]. Journal of Biomedical Optics, 13, 044012(2008).

    [80] Yang Z H, Shang J W, Liu C L et al. Intraoperative imaging of oral-maxillofacial lesions using optical coherence tomography[J]. Journal of Innovative Optical Health Sciences, 13, 2050010(2020).

    [81] Maslennikova A V, Sirotkina M A, Moiseev A A et al. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography[J]. Scientific Reports, 7, 1-10(2017).

    [82] Davoudi B, Lindenmaier A, Standish B A et al. Noninvasive in vivo structural and vascular imaging of human oral tissues with spectral domain optical coherence tomography[J]. Biomedical Optics Express, 3, 826-839(2012).

    [83] Wei W, Choi W J, Wang R K. Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography[J]. Lasers in Medical Science, 33, 123-134(2018).

    [84] Maslennikova A, Sirotkina M, Sedova E et al. PO-1044: in vivo imaging of microvascular changes in irradiated oral mucosa by optical coherence tomography[J]. Radiotherapy and Oncology, 127, S586-S587(2018).

    [85] Chen P H, Wu C H, Chen Y F et al. Combination of structural and vascular optical coherence tomography for differentiating oral lesions of mice in different carcinogenesis stages[J]. Biomedical Optics Express, 9, 1461-1476(2018).

    [86] Chen P H, Lee H Y, Chen Y F et al. Detection of oral dysplastic and early cancerous lesions by polarization-sensitive optical coherence tomography[J]. Cancers, 12, 2376(2020).

    [87] Hu M Y, Yang D, Yang Z H et al. Polarization-sensitive optical coherence tomography for oral squamous cell carcinoma tissue imaging[J]. Acta Optica Sinica, 42, 1017002(2022).

    [88] Tsai M T, Chen Y D, Lee C Y et al. Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography[J]. Biomedical Optics Express, 8, 5001-5012(2017).

    [89] Lee A M D, Cahill L, Liu K et al. Wide-field in vivo oral OCT imaging[J]. Biomedical Optics Express, 6, 2664-2674(2015).

    [90] Kim K H, Park B H, Maguluri G N et al. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography[J]. Optics Express, 15, 18130-18140(2007).

    [91] Choi W J, Wang R K. In vivo imaging of functional microvasculature within tissue beds of oral and nasal cavities by swept-source optical coherence tomography with a forward/side-viewing probe[J]. Biomedical Optics Express, 5, 2620-2634(2014).

    [92] Li K Y, Yang Z H, Liang W X et al. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging[J]. Journal of Biomedical Optics, 25, 046003(2020).

    [93] Oliveira A P, Bitar R A, Silveira L et al. Near-infrared Raman spectroscopy for oral carcinoma diagnosis[J]. Photomedicine and Laser Surgery, 24, 348-353(2006).

    [94] Chen P H, Shimada R, Yabumoto S et al. Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis[J]. Scientific Reports, 6, 1-9(2016).

    [95] Yang E C, Vohra I S, Badaoui H et al. Prospective evaluation of oral premalignant lesions using a multimodal imaging system: a pilot study[J]. Head & Neck, 42, 171-179(2020).

    [96] Malik B H, Jabbour J M, Cheng S N et al. A novel multimodal optical imaging system for early detection of oral cancer[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 121, 290-300(2016).

    [97] Le N, Subhash H M, Kilpatrick-Liverman L et al. Noninvasive multimodal imaging by integrating optical coherence tomography with autofluorescence imaging for dental applications[J]. Journal of Biophotonics, 13, e202000026(2020).

    [98] Higgins L M, Pierce M C. Design and characterization of a handheld multimodal imaging device for the assessment of oral epithelial lesions[J]. Journal of Biomedical Optics, 19, 086004(2014).

    [99] Yoon Y, Jang W H, Xiao P et al. In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe[J]. Biomedical Optics Express, 6, 524-535(2015).

    [100] Quang T, Tran E Q, Schwarz R A et al. Prospective evaluation of multimodal optical imaging with automated image analysis to detect oral neoplasia in vivo[J]. Cancer Prevention Research, 10, 563-570(2017).

    [101] Huang T T, Huang J S, Wang Y Y et al. Novel quantitative analysis of autofluorescence images for oral cancer screening[J]. Oral Oncology, 68, 20-26(2017).

    [102] Jeng M J, Sharma M, Chao T Y et al. Multiclass classification of autofluorescence images of oral cavity lesions based on quantitative analysis[J]. PLoS One, 15, e0228132(2020).

    [103] Kaneoya A, Hasegawa S, Tanaka Y et al. Quantitative analysis of invasive front in tongue cancer using ultrasonography[J]. Journal of Oral and Maxillofacial Surgery, 67, 40-46(2009).

    [104] Yang Z H, Shang J W, Liu C L et al. Identification of oral cancer in OCT images based on an optical attenuation model[J]. Lasers in Medical Science, 35, 1999-2007(2020).

    [105] Yang Z H, Shang J W, Liu C L et al. Classification of salivary gland tumors based on quantitative optical coherence tomography[J]. Lasers in Surgery and Medicine, 53, 830-837(2021).

    [106] Jeyaraj P R, Nadar E R S. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm[J]. Journal of Cancer Research and Clinical Oncology, 145, 829-837(2019).

    [107] Xu S P, Liu C, Zong Y S et al. An early diagnosis of oral cancer based on three-dimensional convolutional neural networks[J]. IEEE Access, 7, 158603-158611(2019).

    [108] Song B F, Sunny S, Uthoff R D et al. Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning[J]. Biomedical Optics Express, 9, 5318-5329(2018).

    [109] Bhandari B, Alsadoon A, Prasad P W C et al. Deep learning neural network for texture feature extraction in oral cancer: enhanced loss function[J]. Multimedia Tools and Applications, 79, 27867-27890(2020).

    [110] Marsden M, Weyers B W, Bec J et al. Intraoperative margin assessment in oral and oropharyngeal cancer using label-free fluorescence lifetime imaging and machine learning[J]. IEEE Transactions on Bio-Medical Engineering, 68, 857-868(2021).

    [111] Yang Z H, Shang J W, Liu C L et al. Identification of oral squamous cell carcinoma in optical coherence tomography images based on texture features[J]. Journal of Innovative Optical Health Sciences, 14, 2140001(2021).

    [112] Yang Z H, Shang J W, Liu C L et al. Classification of oral salivary gland tumors based on texture features in optical coherence tomography images[J]. Lasers in Medical Science, 37, 1139-1146(2022).

    [113] Yang Z H, Shang J W, Liu C L et al. Identification of oral precancerous and cancerous tissue by swept source optical coherence tomography[J]. Lasers in Surgery and Medicine, 54, 320-328(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yanmei Liang, Zihan Yang, Jianwei Shang, Chenlu Liu, Jun Zhang. Imaging Technologies for Oral Cancer Screening and Diagnosis and Their Development Trends[J]. Chinese Journal of Lasers, 2023, 50(15): 1507101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Feb. 1, 2023

    Accepted: Mar. 2, 2023

    Published Online: Aug. 8, 2023

    The Author Email: Liang Yanmei (ymliang@nankai.edu.cn)

    DOI:10.3788/CJL230479

    Topics