Acta Optica Sinica, Volume. 45, Issue 15, 1510006(2025)

Fast Denoising Algorithm for EBAPS Images Based on Harris Corner Detection

Zixiang Zhao1, Bingzhen Li1, Tao Lian1, Xuan Liu1, Li Li1、*, and Lei Yan2
Author Affiliations
  • 1Key Laboratory of Optoelectronic Imaging Technology and System, Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Science and Technology on Low-Light-Level Night Vision Laboratory, Xi’an 710065, Shaanxi ,China
  • show less
    Figures & Tables(16)
    Principle of EBAPS imaging
    Diagram of EBS noise form
    Comparison of images before and after adding gray-level constraint. (a) Original image; (b) Harris corner detection result; (c) Harris corner detection result with Otsu gray-level threshold
    EBS noise detection results. (a) Original image; (b) result of Ref. [8]; (c) result of Ref. [10]; (d) result of Harris-Otsu combined with noise detection algorithm
    Flowchart of adaptive switching median filtering algorithm
    Images for simulation. (a) Original images; (b) illumination 1; (c) illumination 2; (d) illumination 3
    Denoising results under illumination 1
    Denoising results under illumination 2
    Denoising results under illumination 3
    EBAPS images used for experiment. (a) Noisy image; (b) clean image
    Denoising results under illumination of 5×10-4 lx
    • Table 1. Test results for Barbara (PSNR and SSIM)

      View table

      Table 1. Test results for Barbara (PSNR and SSIM)

      MethodIllumination 1Illumination 2Illumination 3
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      Noisy image27.38630.603027.38170.539127.56920.4602
      Median filtering28.11650.710230.28850.721132.54510.7486
      Bilateral filtering30.44180.821931.88300.817733.97060.8453
      Ref. [7]28.14300.711830.32060.722832.56490.7502
      Ref. [9]28.67120.751431.16660.772133.55400.8027
      Proposed30.29230.823432.84790.833336.53730.8728
    • Table 2. Test results for Boats (PSNR and SSIM)

      View table

      Table 2. Test results for Boats (PSNR and SSIM)

      MethodIllumination 1Illumination 2Illumination 3
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      Noisy image27.33330.578827.44250.515627.54040.4422
      Median filtering31.13990.782432.42350.789633.34500.7897
      Bilateral filtering32.27170.846333.52420.859734.79710.8763
      Ref. [7]31.17440.783532.45180.790533.37880.7909
      Ref. [9]31.82060.824233.28890.832034.29250.8332
      Proposed31.45110.847434.52420.874137.79680.9033
    • Table 3. Test results for Peppers (PSNR and SSIM)

      View table

      Table 3. Test results for Peppers (PSNR and SSIM)

      MethodIllumination 1Illumination 2Illumination 3
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      Noisy image27.41160.517827.39010.470027.57150.4244
      Median filtering32.53300.795432.99610.797033.56910.7912
      Bilateral filtering33.94100.875234.38700.882235.09990.8857
      Ref. [7]32.59010.797133.04530.798833.60240.7930
      Ref. [9]33.44550.839733.92840.840434.51690.8347
      Proposed34.62330.889936.86040.906538.76480.9173
    • Table 4. Processing time for single simulation image

      View table

      Table 4. Processing time for single simulation image

      MethodIllumination 1Illumination 2Illumination 3
      BarbaraBoatsPeppersBarbaraBoatsPeppersBarbaraBoatsPeppers
      Median filtering0.00940.00980.00990.01000.01000.01010.00960.00980.0100
      Bilateral filtering0.17080.16810.16220.16510.16110.16040.15840.16330.1614
      Ref. [7]1.04711.05721.12951.02631.10871.05961.07601.11601.1164
      Ref. [9]2.01681.98992.02701.97441.99151.93162.09532.00132.0432
      Proposed0.31440.32400.30730.30730.29090.30360.29990.31980.3155
    • Table 5. Test results for real EBAPS images

      View table

      Table 5. Test results for real EBAPS images

      MethodPSNR /dBSSIMTime /s
      Noisy image31.10010.6246
      Median filtering36.35360.86900.0418
      Bilateral filtering40.74380.95000.6597
      Ref. [4]44.55130.97552.7350
      Ref. [7]36.35600.86905.3697
      Ref. [9]37.41430.889710.1938
      Proposed41.82140.95581.1757
    Tools

    Get Citation

    Copy Citation Text

    Zixiang Zhao, Bingzhen Li, Tao Lian, Xuan Liu, Li Li, Lei Yan. Fast Denoising Algorithm for EBAPS Images Based on Harris Corner Detection[J]. Acta Optica Sinica, 2025, 45(15): 1510006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 18, 2025

    Accepted: May. 12, 2025

    Published Online: Aug. 13, 2025

    The Author Email: Li Li (lili@bit.edu.cn)

    DOI:10.3788/AOS250764

    CSTR:32393.14.AOS250764

    Topics