Laser & Optoelectronics Progress, Volume. 56, Issue 11, 112801(2019)

Deep Adversarial Domain Adaptation Method for Cross-Domain Classification in High-Resolution Remote Sensing Images

Wenxiu Teng1、**, Ni Wang2,3、*, Taisheng Chen2,3, Benlin Wang2,3,4, Menglin Chen2,3, and Huihui Shi3
Author Affiliations
  • 1 College of Forest, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
  • 2 School of Geographic Information and Tourism, Chuzhou University, Chuzhou, Anhui 239000, China
  • 3 Anhui Engineering Laboratory of Geographical Information Intelligent Sensor and Service, Chuzhou, Anhui 239000, China
  • 4 School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • show less
    References(62)

    [3] Zhang F. Deep learning for very high resolution remote sensing data analysis[D]. Wuhan: Wuhan University(2017).

         Zhang F. Deep learning for very high resolution remote sensing data analysis[D]. Wuhan: Wuhan University(2017).

    [4] Hu F. Feature learning based high resolution remote sensing image scene classification[D]. Wuhan: Wuhan University(2017).

         Hu F. Feature learning based high resolution remote sensing image scene classification[D]. Wuhan: Wuhan University(2017).

    [5] Xia G S, Yang W, Delon J et al. Structural high-resolution satellite image indexing. [C]∥ISPRS TC VII Symposium-100 Years ISPRS, July 5-7, 2010, Vienna, Austria. [S. l. : s. n.], 298-303(2010).

         Xia G S, Yang W, Delon J et al. Structural high-resolution satellite image indexing. [C]∥ISPRS TC VII Symposium-100 Years ISPRS, July 5-7, 2010, Vienna, Austria. [S. l. : s. n.], 298-303(2010).

    [6] Risojevic V, Momic S, Babic Z. Gabor descriptors for aerial image classification[M]. ∥Dobnikar A, Lotric U, Šter B. Adaptive and Natural Computing Algorithms. Berlin, Heidelberg: Springer, 6954, 51-60(2011).

         Risojevic V, Momic S, Babic Z. Gabor descriptors for aerial image classification[M]. ∥Dobnikar A, Lotric U, Šter B. Adaptive and Natural Computing Algorithms. Berlin, Heidelberg: Springer, 6954, 51-60(2011).

    [8] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification. [C]∥Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2-5, 2010, San Jose, California. New York: ACM, 270-279(2010).

         Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification. [C]∥Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2-5, 2010, San Jose, California. New York: ACM, 270-279(2010).

    [15] Penatti O A B, Nogueira K, dos Santos J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 44-51(2015).

         Penatti O A B, Nogueira K, dos Santos J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 44-51(2015).

    [17] Li E Z. Research on remotely sensed image scene deep learning and application[D]. Nanjing: Nanjing University(2017).

         Li E Z. Research on remotely sensed image scene deep learning and application[D]. Nanjing: Nanjing University(2017).

    [18] Basu S, Ganguly S, Mukhopadhyay S et al. -09-11)[2018-12-01]. https:∥arxiv., org/abs/1509, 03602(2015).

         Basu S, Ganguly S, Mukhopadhyay S et al. -09-11)[2018-12-01]. https:∥arxiv., org/abs/1509, 03602(2015).

    [22] Long M S, Cao Y, Wang J M et al. Learning transferable features with deep adaptation networks. [C]∥Proceedings of the 32nd International Conference on International Conference on Machine Learning, July 6-11, 2015, Lille, France. Massachusetts: JMLR. org, 97-105(2015).

         Long M S, Cao Y, Wang J M et al. Learning transferable features with deep adaptation networks. [C]∥Proceedings of the 32nd International Conference on International Conference on Machine Learning, July 6-11, 2015, Lille, France. Massachusetts: JMLR. org, 97-105(2015).

    [24] Tzeng E, Hoffman J, Saenko K et al. -02-17)[2018-12-01]. https:∥arxiv., org/abs/1702, 05464(2017).

         Tzeng E, Hoffman J, Saenko K et al. -02-17)[2018-12-01]. https:∥arxiv., org/abs/1702, 05464(2017).

    [27] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Canada., 2672-2680(2014).

         Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Canada., 2672-2680(2014).

    [28] Kingma D P. -01-30)[2018-12-01]. https:∥arxiv., org/abs/1412, 6980(2017).

         Kingma D P. -01-30)[2018-12-01]. https:∥arxiv., org/abs/1412, 6980(2017).

    [29] Li H, Tao C, Wu Z et al. -06-11)[2018-12-01]. https:∥arxiv., org/abs/1705, 10450(2017).

         Li H, Tao C, Wu Z et al. -06-11)[2018-12-01]. https:∥arxiv., org/abs/1705, 10450(2017).

    Tools

    Get Citation

    Copy Citation Text

    Wenxiu Teng, Ni Wang, Taisheng Chen, Benlin Wang, Menglin Chen, Huihui Shi. Deep Adversarial Domain Adaptation Method for Cross-Domain Classification in High-Resolution Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2019, 56(11): 112801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Dec. 17, 2018

    Accepted: Dec. 25, 2018

    Published Online: Jun. 13, 2019

    The Author Email: Wenxiu Teng (wenxiu_teng@163.com), Ni Wang (wnstrive@163.com)

    DOI:10.3788/LOP56.112801

    Topics