Laser & Optoelectronics Progress, Volume. 56, Issue 11, 112801(2019)

Deep Adversarial Domain Adaptation Method for Cross-Domain Classification in High-Resolution Remote Sensing Images

Wenxiu Teng1、**, Ni Wang2,3、*, Taisheng Chen2,3, Benlin Wang2,3,4, Menglin Chen2,3, and Huihui Shi3
Author Affiliations
  • 1 College of Forest, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
  • 2 School of Geographic Information and Tourism, Chuzhou University, Chuzhou, Anhui 239000, China
  • 3 Anhui Engineering Laboratory of Geographical Information Intelligent Sensor and Service, Chuzhou, Anhui 239000, China
  • 4 School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • show less
    Figures & Tables(9)
    Framework of proposed method. (a) High spatial resolution remote sensing image dataset; (b) source deep convolutional neural network; (c) unsupervised adversarial domain adaptation; (d) remote sensing image scene classification
    Sample images of UC-Merced dataset
    Sample images of WHU-RS dataset
    Classification confusion matrix of UC-Merced dataset. (a) Classification accuracy of source domain; (b) classification accuracy of domain adaptation
    Classification confusion matrix of WHU-RS dataset. (a) Classification accuracy of source only; (b) classification accuracy of domain adaptation
    • Table 1. Dataset category for remote sensing image scene classification of source domain

      View table

      Table 1. Dataset category for remote sensing image scene classification of source domain

      Large class(six)Subclass(seventy-one)
      Construction landcity_building, container, storage_room, pipeline, town, baseball_diamond, basketball_court, golf_course, tennis_court, ground_track_field, church, commercial_area, industrial_area, mobile_home_park, palace, stadium, thermal_power_station, dense_ residential, medium_residential, sparse_residential, Square, Center, Park, Resort, School, Playground
      Ultivated landgreen_farmland, dry_farm, bare_land, circular_farmland, rectangular_ farmland, terrace
      Transportationairplane, airport_runway, avenue, highway, harbor, parkinglot, crossroads, bridge, airport, overpass, railway, railway_station, ship, roundabout
      Water areabeach, dam, hirst, lakeshore, river, sea, stream, island, lake, sea_ice, wetland
      Woodlandartificial_grassland, sparse_forest, forest, mangrove, sapling, river_protection_forest, shrubwood, chaparral, meadow
      Otherdesert, snow_mountain, mountain, sandbeach, cloud
    • Table 2. Deep convolution neural network structure of source domain and target domain

      View table

      Table 2. Deep convolution neural network structure of source domain and target domain

      Layer nameLayer typeOutput size /(pixel×pixel×pixel)
      Source /targetDCNNInput224×224×3
      Convolution×2224×224×64
      Map pooling112×112×64
      Convolution×2112×112×128
      Map pooling56×56×128
      Convolution×356×56×256
      Map pooling28×28×256
      Convolution×328×28×512
      Map pooling14×14×512
      Convolution×314×14×512
      Map pooling7×7×512
      Fully connected1×1×1024
      Softmax1×1×18/1×1×21
    • Table 3. Structure of discriminator

      View table

      Table 3. Structure of discriminator

      Layer nameLayer typeOutput size /(pixel×pixel×pixel)
      DiscriminatorFully connected1×1×1024
      Fully connected1×1×512
      Fully connected1×1×2
      Softmax1×1×2
    • Table 4. Classification accuracy of each algorithm%

      View table

      Table 4. Classification accuracy of each algorithm%

      AlgorithmSource onlyMMDDANNProposed
      UC-Merced70.4382.1981.6286.71
      WHU-RS87.0694.8393.8397.41
    Tools

    Get Citation

    Copy Citation Text

    Wenxiu Teng, Ni Wang, Taisheng Chen, Benlin Wang, Menglin Chen, Huihui Shi. Deep Adversarial Domain Adaptation Method for Cross-Domain Classification in High-Resolution Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2019, 56(11): 112801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Dec. 17, 2018

    Accepted: Dec. 25, 2018

    Published Online: Jun. 13, 2019

    The Author Email: Wenxiu Teng (wenxiu_teng@163.com), Ni Wang (wnstrive@163.com)

    DOI:10.3788/LOP56.112801

    Topics