Optics and Precision Engineering, Volume. 33, Issue 10, 1657(2025)

Image super-resolution reconstruction of multi-scale deep feature distillation

Xiang LI1,2, Ling XIONG1,2、*, Daohui YE3, and Shufan LI3
Author Affiliations
  • 1School of Artificial Intelligence and Automation,Wuhan University of Science and Technology,Wuhan43008, China
  • 2Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan430081, China
  • 3Sinopec Jiang Diamond Oil Machinery Co, Ltd, Wuhan40200, China
  • show less
    References(33)

    [1] TSAI R Y, HUANG T S. Multiframe image restoration and registration[J]. Computer Vision and Image Processing, 1, 317-339(1984).

    [2] 刘雪岩, 许聿达, 雷建昕. 基于视差放大与超分辨率的三维光场腹腔镜标定[J]. 光学 精密工程, 30, 510-517(2022).

         LIU X Y, XU Y D, LEI J X et al. Three-dimensional light field endoscope calibration based on light field disparity amplifier and super-resolution network[J]. Opt. Precision Eng., 30, 510-517(2022).

    [3] 易见兵, 陈俊宽, 曹锋. 轻量级重参数化的遥感图像超分辨率重建网络设计[J]. 光学 精密工程, 32, 268-285(2024).

         YI J B, CHEN J K, CAO F et al. Design of lightweight re-parameterized remote sensing image super-resolution network[J]. Opt. Precision Eng., 32, 268-285(2024).

    [4] XIA Z P, CHEN H, ZHANG Y N et al. Lightweight video super-resolution based on hybrid spatio-temporal convolution[J]. Opt. Precision Eng., 32, 2564-2576(2024).

         夏振平, 陈豪, 张宇宁. 基于混合时空卷积的轻量级视频超分辨率重建[J]. 光学 精密工程, 32, 2564-2576(2024).

    [5] DONG C, LOY C C, HE K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [6] DONG C, LOY C C, TANG X O. Accelerat-Ing The Super-Resolution Convolutional Neural Network[M]. LEIBE B, 9906, 391-407(2016).

    [7] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [8] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [9] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [10] KIM H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(2017).

    [11] HUI Z, WANG X M, GAO X B. Fast and accurate single image super-resolution Via information distillation network[C], 723-731(2018).

    [12] HUI Z, GAO X B, YANG Y C et al. Lightweight image super-resolution with information multi-distillation network[C], 2024-2032(2019).

    [13] LIU J, TANG J, WU G S[M]. Residual Feature Distillation Network for Lightweight Image Super-Resolution, 41-55(2020).

    [14] LI Z Y, LIU Y Q, CHEN X Y et al. Blueprint separable residual network for efficient image super-resolution[C], 832-842(2022).

    [15] LIU Z, MAO H Z, WU C Y et al. A ConvNet for the 2020s[C], 11966-11976(2022).

    [16] LIU J, ZHANG W J, TANG Y T et al. Residual feature aggregation network for image super-resolution[C], 2356-2365(2020).

    [17] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C], 1122-1131(2017).

    [18] BEVILACQUA M, ROUMY A, GUILLEMOT C et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C], 10(2012).

    [19] ZEYDE R, ELAD M, PROTTER M[M]. on Sin-Gle Image Scale-Up Using Sparse-Representatio-Ns, 6920, 711-730(2012).

    [20] ARBELÁEZ P, MAIRE M, FOWLKES C et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 898-916(2011).

    [21] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C], 5197-5206(2015).

    [22] MATSUI Y, ITO K, ARAMAKI Y et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 76, 21811-21838(2017).

    [23] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C], 1637-1645(27).

    [24] KANG B, SOHN K A. Fast Accurate And Lightweight Super-Resolution with Cascading Residual Network[M]. Ferrari V, 11214, 256-272(2018).

    [25] WANG L G, DONG X Y, WANG Y Qet al. Exploring sparsity in image super-resoluti-on for efficient inference[C], 4915-4924(20).

    [26] SUN L, PAN J S, TANG J H. ShuffleMixer: an efficient convnet for image super-resolution[J]. Advances in Neural Information Processing Systems, 35, 17314-17326(2022).

    [27] GAO D D, ZHOU D W. A very lightweight and efficient image super-resolution network[J]. Expert Systems with Applications, 213, 118898(2023).

    [28] SUN L, DONG J X, TANG J H et al. Spatially-adaptive feature modulation for efficient image super-resolution[C], 13144-13153(2023).

    [29] HAO F W, WU J S, LIANG W L et al. L-ightweight blueprint residual network for sing-le image super-resolution[J]. Expert Systems with Applications, 250, 123954(2024).

    [30] SUN K, XIAO B, LIU D et al. Deep high-resolution representation learning for human pose estimation[C], 5686-5696(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiang LI, Ling XIONG, Daohui YE, Shufan LI. Image super-resolution reconstruction of multi-scale deep feature distillation[J]. Optics and Precision Engineering, 2025, 33(10): 1657

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 12, 2024

    Accepted: --

    Published Online: Jul. 23, 2025

    The Author Email: Ling XIONG (xiongling@wust.edu.cn)

    DOI:10.37188/OPE.20253310.1657

    Topics