Optics and Precision Engineering, Volume. 33, Issue 10, 1657(2025)

Image super-resolution reconstruction of multi-scale deep feature distillation

Xiang LI1,2, Ling XIONG1,2、*, Daohui YE3, and Shufan LI3
Author Affiliations
  • 1School of Artificial Intelligence and Automation,Wuhan University of Science and Technology,Wuhan43008, China
  • 2Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan430081, China
  • 3Sinopec Jiang Diamond Oil Machinery Co, Ltd, Wuhan40200, China
  • show less
    Figures & Tables(20)
    Multi-scale deep feature distillation network structure
    Multi-scale deep feature distillation architecture
    ConvNeXt-3 convolutional layer
    Architecture of ESA block
    Architecture of CCA block
    Reconstruction effect comparison of “img_061” from Urban100 datasets at ×4 magnification
    Reconstruction effect comparison of “img_067” from Urban100 datasets at ×4 magnification
    Reconstruction effect comparison of “img_073” from Urban100 datasets at ×4 magnification
    Reconstruction effect comparison of “028” from PDC30 datasets at ×4 magnification
    Comparison of different scales of ConvNeXt residual block stacking sequence reconstruction results
    Comparison of parameters and reconstruction performance of different algorithms
    Semantic segmentation map and ellipse fitting results of “013.png” from PDC30 datasets before and after super-resolution reconstruction
    • Table 1. Performance of different algorithms on five benchmark datasets at ×2 magnification

      View table
      View in Article

      Table 1. Performance of different algorithms on five benchmark datasets at ×2 magnification

      MethodScalePSNR/SSIM
      Set5Set14BSD100Urban100Manga109
      Bicubic×233.69/0.928 430.34/0.867 529.57/0.843 826.88/0.843 830.80/0.933 9
      VDSR9×237.53/0.958 733.03/0.912 431.90/0.896 030.76/0.914 037.22/0.972 9
      DRCN23×237.63/0.958 833.04/0.911 831.85/0.894 230.75/0.913 337.63/0.972 3
      IDN11×237.83/0.960 033.30/0.914 832.08/0.898 531.27/0.919 638.01/0.974 9
      CARN24×237.76/0.959 033.52/0.916 632.09/0.897 831.92/0.925 6-/-
      IMDN12×238.00/0.960 533.63/0.917 732.19/0.899 632.17/0.928 338.88/0.977 4
      RFDN13×238.05/0.960 633.68/0.918 432.16/0.899 432.12/0.927 838.88/0.977 3
      SMSR25×238.00/0.960 133.64/0.917 932.17/0.899 032.19/0.928 438.76/0.977 1
      ShuffleMixer26×238.01/0.960 633.63/0.918 032.17/0.899 531.89/0.925 738.83/0.977 4
      VLESR27×238.01/0.960 533.58/0.917 732.16/0.899 332.14/0.928 038.75/0.977 0
      SAFMN28×238.00/0.960 533.54/0.917 732.16/0.899 531.84/0.925 638.71/0.977 1
      LBRN29×238.08/0.960 833.57/0.917 332.23/0.900 532.35/0.930 338.93/0.977 7
      MSDFDN×238.13/0.960 933.68/0.918 532.26/0.900 832.44/0.930 938.94/0.977 7
      MSDFDN+×238.17/0.961 133.82/0.920 232.28/0.901 032.58/0.932 339.09/0.977 8
    • Table 2. Performance of different algorithms on five benchmark datasets at ×3 magnification

      View table
      View in Article

      Table 2. Performance of different algorithms on five benchmark datasets at ×3 magnification

      MethodScalePSNR/SSIM
      Set5Set14BSD100Urban100Manga109
      Bicubic×330.39/0.868 227.55/0.774 227.21/0.738 524.46/0.734 926.95/0.855 6
      VDSR9×333.66/0.921 329.77/0.831 428.82/0.797 627.14/0.827 932.01/0.934 0
      DRCN23×333.82/0.922 629.76/0.831 128.80/0.796 327.15/0.827 632.24/0.934 3
      IDN11×334.11/0.925 329.99/0.835 428.95/0.801 327.42/0.835 932.71/0.938 1
      CARN24×334.29/0.925 530.29/0.840 729.06/0.803 428.06/0.849 3-/-
      IMDN12×334.36/0.927 030.32/0.841 729.09/0.804 628.17/0.851 933.61/0.944 5
      RFDN13×334.41/0.927 330.34/0.842 029.09/0.804 228.21/0.852 533.67/0.944 9
      SMSR25×334.40/0.927 030.33/0.841 229.10/0.805 028.25/0.853 633.68/0.944 5
      ShuffleMixer26×334.40/0.927 230.37/0.842 329.12/0.805 128.08/0.849 833.69/0.944 8
      VLESR27×334.40/0.927 230.34/0.841 529.08/0.804 328.16/0.851 933.61/0.944 5
      SAFMN28×334.34/0.926 730.33/0.841 829.08/0.804 827.95/0.847 433.52/0.943 7
      LBRN29×334.43/0.927 630.39/0.842 929.13/0.805 928.29/0.854 533.72/0.945 5
      MSDFDN×334.54/0.928 230.45/0.844 829.18/0.806 928.47/0.858 633.96/0.946 8
      MSDFDN+×334.61/0.928 930.52/0.845 929.23/0.808 328.64/0.861 734.12/0.947 9
    • Table 3. Performance of different algorithms on five benchmark datasets at ×4 magnification

      View table
      View in Article

      Table 3. Performance of different algorithms on five benchmark datasets at ×4 magnification

      MethodScalePSNR/SSIM
      Set5Set14BSD100Urban100Manga109
      Bicubic×428.42/0.810 426.00/0.702 725.96/0.667 523.14/0.657 724.89/0.786 6
      VDSR9×431.35/0.883 828.01/0.767 427.29/0.725 125.18/0.752 428.83/0.887 0
      DRCN23×431.53/0.885 428.02/0.767 027.23/0.723 325.14/0.751 028.93/0.885 4
      IDN11×431.82/0.890 328.25/0.773 027.41/0.729 725.41/0.763 229.41/0.894 2
      CARN24×432.13/0.893 728.60/0.780 627.58/0.734 926.07/0.783 7-/-
      IMDN12×432.21/0.894 828.58/0.781 127.56/0.735 326.04/0.783 830.45/0.907 5
      RFDN13×432.24/0.895 228.61/0.781 927.57/0.736 026.11/0.785 830.58/0.908 9
      SMSR25×432.12/0.893 228.55/0.780 827.55/0.735 126.11/0.786 830.54/0.908 5
      ShuffleMixer26×432.21/0.895 328.66/0.782 727.61/0.736 626.08/0.783 530.65/0.909 3
      VLESR27×432.17/0.894 528.55/0.780 227.55/0.734 526.03/0.783 030.48/0.907 3
      SAFMN28×432.18/0.894 828.60/0.781 327.58/0.735 925.97/0.780 930.43/0.906 3
      LBRN29×432.33/0.896 428.62/0.782 627.60/0.737 726.17/0.788 230.60/0.910 2
      MSDFDN×432.28/0.896 528.67/0.783 927.63/0.738 226.27/0.791 730.73/0.911 4
      MSDFDN+×432.46/0.898 228.78/0.785 927.68/0.740 126.49/0.797 630.96/0.914 4
    • Table 4. Performance of different algorithms on PDC bit composite dataset

      View table
      View in Article

      Table 4. Performance of different algorithms on PDC bit composite dataset

      DatasetScalePSNR/SSIM
      BicubicRFDN13ShuffleMixer26SAFMN28MSDFDN
      PDC30×235.40/0.954 841.87/0.978 642.02/0.978 541.81/0.977 442.13/0.978 9
      ×332.49/0.917 237.17/0.946 337.24/0.946 537.18/0.946 137.26/0.946 7
      ×430.49/0.879 534.37/0.915 134.32/0.915 134.32/0.914 734.38/0.915 2
    • Table 5. Influence of the number of MSDFDB modules on the performance of the proposed algorithm

      View table
      View in Article

      Table 5. Influence of the number of MSDFDB modules on the performance of the proposed algorithm

      模块数量Params/KPSNR/SSIM
      Set5Set14BSD100Urban100Manga109
      n=548138.10/0.960 833.67/0.918 832.24/0.900 532.31/0.930 238.86/0.977 3
      n=657238.13/0.961 033.67/0.918 532.26/0.900 832.44/0.930 938.91/0.977 6
      n=766438.17/0.961 133.79/0.920 232.26/0.900 732.52/0.931 839.01/0.977 6
      n=875538.13/0.961 033.76/0.919 132.25/0.900 632.50/0.931 938.97/0.977 2
    • Table 6. Experimental results of attention mechanism module ablation

      View table
      View in Article

      Table 6. Experimental results of attention mechanism module ablation

      MethodESACCAPSNR/SSIM
      Set5Set14BSD100Urban100Manga109
      Model1××38.07/0.960 733.71/0.918 532.22/0.900 432.23/0.929 338.59/0.977 0
      Model2×38.10/0.960 833.70/0.918 432.22/0.900 332.36/0.930 338.90/0.977 4
      Model3×38.11/0.960 933.69/0.918 532.25/0.900 732.41/0.930 838.87/0.977 3
      Model438.13/0.961 033.67/0.918 532.26/0.900 832.44/0.930 938.91/0.977 6
    • Table 7. Performance of different algorithms on five benchmark datasets

      View table
      View in Article

      Table 7. Performance of different algorithms on five benchmark datasets

      MethodPSNR/SSIM
      Set5Set14BSD100Urban100Manga109
      MSDFDB-33338.07/0.960 833.65/0.918 632.23/0.900 632.32/0.930 038.90/0.977 6
      MSDFDB-75338.09/0.960 933.68/0.918 632.24/0.900 532.38/0.930 538.87/0.977 5
      MSDFDB-35738.13/0.961 033.67/0.918 532.26/0.900 832.44/0.930 938.91/0.977 6
    • Table 8. Comparison of ellipse fitting errors before and after super-resolution reconstruction

      View table
      View in Article

      Table 8. Comparison of ellipse fitting errors before and after super-resolution reconstruction

      Group12
      MAE/px0.0710.043
      MSE/px0.0130.005
      Max Error/px0.1520.110
    Tools

    Get Citation

    Copy Citation Text

    Xiang LI, Ling XIONG, Daohui YE, Shufan LI. Image super-resolution reconstruction of multi-scale deep feature distillation[J]. Optics and Precision Engineering, 2025, 33(10): 1657

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 12, 2024

    Accepted: --

    Published Online: Jul. 23, 2025

    The Author Email: Ling XIONG (xiongling@wust.edu.cn)

    DOI:10.37188/OPE.20253310.1657

    Topics