Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0514004(2023)

Analysis of Dislocation Formation and Expansion Characteristics in Vertical Cavity Surface Emitting Lasers

Yuqi Zhang1,2, Zhiyuan Zuo1, and Jia Zhao1、*
Author Affiliations
  • 1School of Information Science and Engineering, Key Laboratory of Laser & Infrared System, Shandong University, Qingdao 266237, Shandong, China
  • 2Xiamen Sanan Integrated Circuit Co., Ltd., Xiamen 361000, Fujian, China
  • show less
    References(67)

    [1] Wang X Y, Cui B F, Li C F et al. Research progress of transverse mode control for vertical cavity surface emitting lasers[J]. Laser & Optoelectronics Progress, 58, 0700008(2021).

    [2] Liu A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 47, 0701005(2020).

    [3] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [4] Sun T Y, Xia M J, Qiao L. Failure mechanism and detection analysis of semiconductor laser[J]. Laser & Optoelectronics Progress, 58, 1900003(2021).

    [5] Ueda O, Pearton S J[M]. Materials and reliability handbook for semiconductor optical and electron devices(2013).

    [6] Petroff P, Hartman R L. Defect structure introduced during operation of heterojunction GaAs lasers[J]. Applied Physics Letters, 23, 469-471(1973).

    [7] Hutchinson P W, Dobson P S, O’Hara S et al. Defect structure of degraded heterojunction GaAlAs-GaAs lasers[J]. Applied Physics Letters, 26, 250-252(1975).

    [8] Ueda O. On degradation studies of III-V compound semiconductor optical devices over three decades: focusing on gradual degradation[J]. Japanese Journal of Applied Physics, 49, 090001(2010).

    [9] Hawkins B M, Hawthorne R A, Guenter J K et al. Reliability of various size oxide aperture VCSELs[C], 540-550(2002).

    [10] Mathes D, Guenter J, Tatum J et al. AOC moving forward: the impact of materials behavior[J]. Proceedings of SPIE, 4994, 162-172(2006).

    [11] Cottrell A H. Theory of dislocations[J]. Progress in Metal Physics, 1, 77-126(1949).

    [12] Hull D, Bacon D J[M]. Introduction to dislocations(2011).

    [13] Ueda O, Imai H, Fujiwara T et al. Abrupt degradation of three types of semiconductor light emitting diodes at high temperature[J]. Journal of Applied Physics, 51, 5316-5325(1980).

    [14] Mukherjee K, Selvidge J, Jung D et al. Recombination-enhanced dislocation climb in InAs quantum dot lasers on silicon[J]. Journal of Applied Physics, 128, 025703(2020).

    [15] O’Hara S, Hutchinson P W, Dobson P S. The origin of dislocation climb during laser operation[J]. Applied Physics Letters, 30, 368-371(1977).

    [16] Tatum J A. Evolution of VCSELs[J]. Proceedings of SPIE, 9001, 90010C(2014).

    [17] Jiménez J. Laser diode reliability: crystal defects and degradation modes[J]. Comptes Rendus Physique, 4, 663-673(2003).

    [18] Herrick R W, Ueda O[M]. Reliability of semiconductor lasers and optoelectronic devices(2021).

    [19] Jones R. Do we really understand dislocations in semiconductors?[J]. Materials Science and Engineering: B, 71, 24-29(2000).

    [20] Twesten R D, Follstaedt D M, Choquette K D et al. Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers[J]. Applied Physics Letters, 69, 19-21(1996).

    [21] Choquette K D, Geib K M, Chui H C et al. Selective oxidation of buried AlGaAs versus AlAs layers[J]. Applied Physics Letters, 69, 1385-1387(1996).

    [22] Freymann G V, Schoenfeld W V, Rumpf R C et al. Reliability and manufacturability of 25G VCSELs with oxide apertures formed by in-situ monitoring[J]. Proceedings of SPIE, 10115, 1011519(2017).

    [23] Herrick R W, Dafinca A, Farthouat P et al. Corrosion-based failure of oxide-aperture VCSELs[J]. IEEE Journal of Quantum Electronics, 49, 1045-1052(2013).

    [24] Mathes D, Guenter J, Hawkins B et al. An atlas of ESD failure signatures in vertical cavity surface emitting lasers[C], 336-343(2005).

    [25] Krueger J J, Sabharwal R, McHugo S A et al. Studies of ESD-related failure patterns of Agilent oxide VCSELs[J]. Proceedings of SPIE, 4994, 162-172(2003).

    [26] Vanzi M, Mura G, Marcello G et al. ESD tests on 850 nm GaAs-based VCSELs[J]. Microelectronics Reliability, 64, 617-622(2016).

    [27] Guenter J K, Tatum J A, Hawthorne R A et al. VCSELs at Honeywell: the story continues[J]. Proceedings of SPIE, 5364, 34-46(2004).

    [28] McHugo S A, Krishnan A, Krueger J J et al. Characterization of failure mechanisms for oxide VCSELs[J]. Proceedings of SPIE, 4994, 55-66(2003).

    [29] Xie S N, Herrick R W, Chamberlin D et al. Failure mode analysis of oxide VCSELs in high humidity and high temperature[J]. Journal of Lightwave Technology, 21, 1013-1019(2003).

    [30] Xie S N, Herrick R W, De Brabander G N et al. Reliability and failure mechanisms of oxide VCSELs in nonhermetic environments[J]. Proceedings of SPIE, 4994, 173-180(2003).

    [31] Dafinca A, Weidberg A R, McMahon S J et al. Reliability and degradation of oxide VCSELs due to reaction to atmospheric water vapor[J]. Proceedings of SPIE, 8639, 152-161(2013).

    [32] Helms C J, Aeby I, Luo W L et al. Reliability of oxide VCSELs at emcore[J]. Proceedings of SPIE, 5364, 183-189(2004).

    [33] Herrick R W. Design for reliability and common failure mechanisms in vertical cavity surface emitting lasers[J]. MRS Online Proceedings Library, 1432, 9-20(2012).

    [34] Mathes D T. Materials issues for VCSEL operation and reliability[D](2002).

    [35] Mauro J C. Motion of dislocations and interfaces[M]. Materials kinetics, 161-176(2021).

    [36] Zhao J S[M]. Theoretical basis of dislocation(1989).

    [37] Cai W, Bulatov V V, Chang J P et al. Dislocation core effects on mobility[M]. Dislocations in solids, 1-80(2004).

    [38] Vanderschaeve G, Levade C, Caillard D. Dislocation mobility and electronic effects in semiconductor compounds[J]. Journal of Microscopy, 203, 72-83(2001).

    [39] Seeger A, Donth H, Pfaff F. The mechanism of low temperature mechanical relaxation in deformed crystals[J]. Discussions of the Faraday Society, 23, 19-30(1957).

    [40] Maeda K, Sato M, Kubo A et al. Quantitative measurements of recombination enhanced dislocation glide in gallium arsenide[J]. Journal of Applied Physics, 54, 161-168(1983).

    [41] Mathes D T, Hull R, Choquette K D et al. Nanoscale materials characterization of degradation in VCSELs[J]. Proceedings of SPIE, 4994, 67-82(2003).

    [42] Nannichi Y, Matsui J, Ishida K. Rapid degradation in double-heterostructure lasers. II. semiquantitative analyses on the propagation of dark line defects[J]. Japanese Journal of Applied Physics, 14, 1561-1568(1975).

    [43] Kamejima T, Ishida K, Matsui J. Injection-enhanced dislocation glide under uniaxial stress in GaAs-(GaAl)As double heterostructure laser[J]. Japanese Journal of Applied Physics, 16, 233-240(1977).

    [44] Öberg S, Sitch P K, Jones R et al. First-principles calculations of the energy barrier to dislocation motion in Si and GaAs[J]. Physical Review B, 51, 13138-13145(1995).

    [45] Choi S, Mihara M, Ninomiya T. Dislocation velocities in GaAs[J]. Japanese Journal of Applied Physics, 16, 737-745(1977).

    [46] Maeda K, Takeuchi S. Enhanced glide of dislocations in GaAs single crystals by electron beam irradiation[J]. Japanese Journal of Applied Physics, 20, L165-L168(1981).

    [47] Yonenaga I, Ohno Y, Taishi T et al. Recent knowledge of strength and dislocation mobility in wide band-gap semiconductors[J]. Physica B: Condensed Matter, 404, 4999-5001(2009).

    [48] Churochkin D, Lund F. Coherent propagation and incoherent diffusion of elastic waves in a two dimensional continuum with a random distribution of edge dislocations[J]. Wave Motion, 105, 102768(2021).

    [49] Johnston W G, Gilman J J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals[J]. Journal of Applied Physics, 30, 129-144(1959).

    [50] Yonezu H, Ueno M, Kamejima T et al. Lasing characteristics in a degraded GaAs-AlxGa1-xAs double heterostructure laser[J]. Japanese Journal of Applied Physics, 13, 835-842(1974).

    [51] Waters R G. Diode laser degradation mechanisms: a review[J]. Progress in Quantum Electronics, 15, 153-174(1991).

    [52] Hutchinson P W, Dobson P S. Defect structure of degraded GaAlAs-GaAs double heterojunction lasers[J]. Philosophical Magazine, 32, 745-754(1975).

    [53] Cross M, Greenside H[M]. Pattern formation and dynamics in nonequilibrium systems(2009).

    [54] Hirth J P, Lothe J, Mura T. Theory of dislocations (2nd ed.)[J]. Journal of Applied Mechanics, 50, 476-477(1983).

    [55] Halsey T C. Diffusion-limited aggregation: a model for pattern formation[J]. Physics Today, 53, 36-41(2000).

    [56] Holt D L. Dislocation cell formation in metals[J]. Journal of Applied Physics, 41, 3197-3201(1970).

    [57] Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals[J]. Acta Metallurgica, 31, 1367-1379(1983).

    [58] Walgraef D, Aifantis E C. Dislocation patterning in fatigued metals as a result of dynamical instabilities[J]. Journal of Applied Physics, 58, 688-691(1985).

    [59] Kratochvil J. Dislocation pattern formation in metals[J]. Revue De Physique Appliquée, 23, 419-429(1988).

    [60] Kubin L P. Dislocation patterns: experiment, theory and simulation[M]. Gonis A, Turchi P E A, Kudrnovský J. Stability of materials. NATO ASI series, 355, 99-135(1996).

    [61] Kedharnath A, Kapoor R, Sarkar A. Classical molecular dynamics simulations of the deformation of metals under uniaxial monotonic loading: a review[J]. Computers & Structures, 254, 106614(2021).

    [62] Huo J R, Yang H Y, Wang J et al. Computational simulation of al-based alloy surface structure dislocation: the first-principles calculation and atomic pair-potential lattice dynamics calculation[J]. Modern Physics Letters B, 35, 2150143(2021).

    [63] Kurunczi-Papp D, Laurson L. Dislocation avalanches from strain-controlled loading: a discrete dislocation dynamics study[J]. Physical Review E, 104, 025008(2021).

    [64] Duhan N, Patil R U, Mishra B K et al. Thermo-elastic analysis of edge dislocation using extended finite element method[J]. International Journal of Mechanical Sciences, 192, 106109(2021).

    [65] Nguyen K, Zhang M J, Amores V J et al. Computational modeling of dislocation slip mechanisms in crystal plasticity: a short review[J]. Crystals, 11, 42(2021).

    [66] Erofeev V I, Malkhanov A. Nonlinear acoustic waves in solids with dislocations[J]. Procedia IUTAM, 23, 228-235(2017).

    [67] Li P, Zhang Z F. Standing wave effect and fractal structure in dislocation evolution[J]. Scientific Reports, 7, 4062(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yuqi Zhang, Zhiyuan Zuo, Jia Zhao. Analysis of Dislocation Formation and Expansion Characteristics in Vertical Cavity Surface Emitting Lasers[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0514004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Dec. 7, 2021

    Accepted: Jan. 18, 2022

    Published Online: Mar. 3, 2023

    The Author Email: Jia Zhao (zhaojia@sdu.edu.cn)

    DOI:10.3788/LOP213162

    Topics