Acta Optica Sinica, Volume. 44, Issue 20, 2023001(2024)
Electromagnetic‒Thermal Splitter Based on Double-Physical-Field Null Space Medium
[3] Zhang J J, Pendry J B, Luo Y. Transformation optics from macroscopic to nanoscale regimes: a review[J]. Advanced Photonics, 1, 014001(2019).
[4] Yan W, Yan M, Ruan Z C et al. Coordinate transformations make perfect invisibility cloaks with arbitrary shape[J]. New Journal of Physics, 10, 043040(2008).
[5] Sun F, He S L. A third way to cloak an object: cover-up with a background object (invited paper)[J]. Progress in Electromagnetics Research, 149, 173-182(2014).
[7] Rahm M, Schurig D, Roberts D A et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations[J]. Photonics and Nanostructures-Fundamentals and Applications, 6, 87-95(2008).
[8] Yaghjian A D, Maci S. Alternative derivation of electromagnetic cloaks and concentrators[J]. New Journal of Physics, 10, 115022(2008).
[9] Chen H Y, Hou B, Chen S Y et al. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies[J]. Physical Review Letters, 102, 183903(2009).
[10] Kwon D H, Werner D H. Polarization splitter and polarization rotator designs based on transformation optics[J]. Optics Express, 16, 18731-18738(2008).
[12] Jiang W X, Cui T J, Yang X M et al. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letters, 98, 204101(2011).
[13] Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 1, 124(2010).
[14] Sun F, He S L. Extending the scanning angle of a phased array antenna by using a null-space medium[J]. Scientific Reports, 4, 6832(2014).
[15] García-Meca C, Tung M M, Galán J V et al. Squeezing and expanding light without reflections via transformation optics[J]. Optics Express, 19, 3562-3575(2011).
[16] Rahm M, Roberts D A, Pendry J B et al. Transformation-optical design of adaptive beam bends and beam expanders[J]. Optics Express, 16, 11555-11567(2008).
[17] Li J, Zhou Y Y, Chen H Y. Square Maxwell’s fish-eye lens for near-field broadband achromatic super-resolution imaging[J]. Chinese Optics Letters, 20, 031101(2022).
[20] Lei Q, Foster R, Grant P S et al. Generalized maxwell fish-eye lens as a beam splitter: a case study in realizing all-dielectric devices from transformation electromagnetics[J]. IEEE Transactions on Microwave Theory and Techniques, 65, 4823-4835(2017).
[21] Chen H Y, Chan C T. Acoustic cloaking and transformation acoustics[J]. Journal of Physics D, 43, 113001(2010).
[22] Milton G W, Briane M, Willis J R. On cloaking for elasticity and physical equations with a transformation invariant form[J]. New Journal of Physics, 8, 248(2006).
[23] Sun F, He S L. Dc magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials of positive permeability[J]. Progress In Electromagnetics Research, 142, 683-699(2013).
[24] Sanchez A, Navau C, Prat-Camps J et al. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids[J]. New Journal of Physics, 13, 093034(2011).
[25] Yang F, Mei Z L, Jin T Y et al. DC electric invisibility cloak[J]. Physical Review Letters, 109, 053902(2012).
[26] Liu M, Zhong L M, Ma X et al. DC illusion and its experimental verification[J]. Applied Physics Letters, 101, 051905(2012).
[27] Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 108, 214303(2012).
[28] Ma Y G, Lan L, Jiang W et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity[J]. NPG Asia Materials, 5, e73(2013).
[29] Cooper J R, Kim S, Tentzeris M M. A novel polarization-independent, free-space, microwave beam splitter utilizing an inkjet-printed, 2-D array frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 11, 686-688(2012).
[30] Fu H Y, Zhu K. Radio-over-fiber system with multiple-optical-source-based microwave photonic filter performing as a subcarrier demultiplexer[J]. IEEE Photonics Journal, 3, 152-157(2011).
[31] Winnall S T, Lindsay A C, Austin M W et al. A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry‒Perot and integrated hybrid Fresnel lens system[J]. IEEE Transactions on Microwave Theory and Techniques, 54, 868-872(2006).
[32] Douglas T J, Nashashibi A Y, Shaman H N et al. Sub-millimeter-wave polarization-independent spatial power divider for a two-port dual-polarized antenna[J]. IEEE Transactions on Terahertz Science and Technology, 11, 508-518(2021).
[33] Djerafi T, Patrovsky A, Wu K et al. Recombinant waveguide power divider[J]. IEEE Transactions on Microwave Theory and Techniques, 61, 3884-3891(2013).
[34] Xia B, Wu L S, Ren S W et al. A balanced-to-balanced power divider with arbitrary power division[J]. IEEE Transactions on Microwave Theory and Techniques, 61, 2831-2840(2013).
[35] Pieraccini M, Luzi G, Mecatti D et al. Remote sensing of building structural displacements using a microwave interferometer with imaging capability[J]. NDT & E International, 37, 545-550(2004).
[36] Back F G. Lens tester for photographic lenses[J]. Review of Scientific Instruments, 21, 722-724(1950).
[37] Watanabe R. A novel polarization-independent beam splitter[J]. IEEE Transactions on Microwave Theory and Techniques, 28, 685-689(1980).
[38] Ben-Abdallah P, Belarouci A, Frechette L et al. Heat flux splitter for near-field thermal radiation[J]. Applied Physics Letters, 107, 053109(2015).
[39] Sánchez R, Burset P, Yeyati A L. Cooling by cooper pair splitting[J]. Physical Review B, 98, 241414(2018).
[40] Nalavade S P, Prabhune C L, Sane N K. Effect of novel flow divider type turbulators on fluid flow and heat transfer[J]. Thermal Science and Engineering Progress, 9, 322-331(2019).
[41] Peng X, Li D H, Li J Q et al. Improvement of flow distribution by new inlet header configuration with splitter plates for plate-fin heat exchanger[J]. Energies, 13, 1323(2020).
[42] Huo Z Y, Zhao L, Yin H C et al. Simultaneous synthesis of structural-constrained heat exchanger networks with and without stream splits[J]. The Canadian Journal of Chemical Engineering, 91, 830-842(2013).
[43] Sajedi R, Osanloo B, Talati F et al. Splitter plate application on the circular and square pin fin heat sinks[J]. Microelectronics Reliability, 62, 91-101(2016).
[44] Chen Z H, Sun F, Liu Y C et al. Electromagnetic‒acoustic splitter with a tunable splitting ratio based on copper plates[J]. Optics Letters, 48, 3407-3410(2023).
[45] Sun F, Liu Y C, Yang Y B et al. Thermal surface transformation and its applications to heat flux manipulations[J]. Optics Express, 27, 33757-33767(2019).
[46] Sun F, He S L. Optical Surface Transformation: changing the optical surface by homogeneous optic-null medium at will[J]. Scientific Reports, 5, 16032(2015).
[47] Sun F, Zheng B, Chen H S et al. Transformation optics: from classic theory and applications to its new branches[J]. Laser & Photonics Reviews, 11, 1700034(2017).
[48] Sun F, Liu Y C, Yang Y B et al. Arbitrarily shaped retro-reflector by optics surface transformation[J]. Chinese Optics Letters, 18, 102201(2020).
Get Citation
Copy Citation Text
Shaojie Chen, Fei Sun, Yichao Liu, Hanchuan Chen, Yawen Qi. Electromagnetic‒Thermal Splitter Based on Double-Physical-Field Null Space Medium[J]. Acta Optica Sinica, 2024, 44(20): 2023001
Category: Optical Devices
Received: Apr. 18, 2024
Accepted: May. 28, 2024
Published Online: Oct. 12, 2024
The Author Email: Sun Fei (sunfei@tyut.edu.cn)