Chinese Journal of Lasers, Volume. 49, Issue 10, 1002702(2022)
Fabrication of Bioinspired Functional Micro-Nano Structures by Femtosecond Laser and Their Applications
[1] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).
[2] Zhao Y J, Xie Z Y, Gu H C et al. Bio-inspired variable structural color materials[J]. Chemical Society Reviews, 41, 3297-3317(2012).
[3] Yan Y Y, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces[J]. Advances in Colloid and Interface Science, 169, 80-105(2011).
[4] Zhang Y Y, Jiao Y L, Li C Z et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications[J]. International Journal of Extreme Manufacturing, 2, 032002(2020).
[5] Tadepalli S, Slocik J M, Gupta M K et al. Bio-optics and bio-inspired optical materials[J]. Chemical Reviews, 117, 12705-12763(2017).
[6] Liu X G, Coxon P R, Peters M et al. Black silicon: fabrication methods, properties and solar energy applications[J]. Energy and Environmental Science, 7, 3223-3263(2014).
[7] Zhang L, Dai B, Zhang D W. Research progress of artificial compound eye[J]. Optical Instruments, 43, 86-94(2021).
[8] Yang Q, Li M J, Bian H et al. Bioinspired artificial compound eyes: characteristic, fabrication, and application[J]. Advanced Materials Technologies, 6, 2100091(2021).
[9] Alameda M, Osorio M R, Hernández J J et al. Multilevel hierarchical topographies by combined photolithography and nanoimprinting processes to create surfaces with controlled wetting[J]. ACS Applied Nano Materials, 2, 4727-4733(2019).
[10] Wang W J, Li J, Li R H et al. Fabrication of hierarchical micro/nano compound eyes[J]. ACS Applied Materials & Interfaces, 11, 34507-34516(2019).
[11] Wang D F, Chen D D, Chen Z Y. Recent progress in 3D printing of bioinspired structures[J]. Frontiers in Materials, 7, 286(2020).
[12] Velasco-Hogan A, Xu J, Meyers M A. Additive manufacturing as a method to design and optimize bioinspired structures[J]. Advanced Materials, 30, e1800940(2018).
[13] Zhang Y C, Qu S X, Cheng X et al. Fabrication and characterization of gecko-inspired dry adhesion, superhydrophobicity and wet self-cleaning surfaces[J]. Journal of Bionic Engineering, 13, 132-142(2016).
[14] Park B D, Leem J W, Yu J S. Bioinspired Si subwavelength gratings by closely-packed silica nanospheres as etch masks for efficient antireflective surface[J]. Applied Physics B, 105, 335-342(2011).
[15] Chen Z P, Lin Y Y, Lee W et al. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal[J]. ACS Applied Materials & Interfaces, 10, 29338-29346(2018).
[16] Yu Y R, Shang L R, Gao W et al. Microfluidic lithography of bioinspired helical micromotors[J]. Angewandte Chemie, 56, 12127-12131(2017).
[17] Liu R, Chi Z D, Cao L et al. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment[J]. Applied Surface Science, 534, 147576(2020).
[18] Shen H J, Wang Y D, Cao L et al. Fabrication of periodical micro-stripe structure of polyimide by laser interference induced forward transfer technique[J]. Applied Surface Science, 541, 148466(2021).
[19] Maiman T H. Stimulated optical radiation in ruby[J]. Essentials of Lasers, 187, 493-494(1969).
[20] Du D, Liu X, Korn G et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 64, 3071-3073(1994).
[21] von der Linde D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 109/110, 1-10(1997).
[22] Kash J A, Tsang J C, Hvam J M. Sub-picosecond time-resolved Raman spectroscopy of LO phonons in GaAs[J]. Physical Review Letters, 54, 2151-2154(1985).
[23] Tsen K T, Kiang J G, Ferry D K et al. Subpicosecond time-resolved Raman studies of LO phonons in GaN: dependence on photoexcited carrier density[J]. Applied Physics Letters, 89, 112111(2006).
[24] Cheng J, Liu C S, Shang S et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 46, 88-102(2013).
[25] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).
[26] Yamada K, Watanabe W, Li Y D et al. Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses[J]. Optics Letters, 29, 1846-1848(2004).
[27] Sugioka K, Xu J, Wu D et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass[J]. Lab on a Chip, 14, 3447-3458(2014).
[28] Žukauskas A, Malinauskas M, Kadys A et al. Black silicon: substrate for laser 3D micro/nano-polymerization[J]. Optics Express, 21, 6901-6909(2013).
[29] Tian Z N, Hua J G, Hao J et al. Micro-buried spiral zone plate in a lithium niobate crystal[J]. Applied Physics Letters, 110, 041102(2017).
[30] Hu Z Y, Tian Z N, Hua J G et al. Axially controllable multiple orbital angular momentum beam generator[J]. Applied Physics Letters, 117, 021101(2020).
[31] Hu X Y, Ma Z C, Han B et al. Femtosecond laser fabrication of protein-based smart soft actuators[J]. Chinese Journal of Lasers, 48, 1402001(2021).
[32] Sun Y L, Dong W F, Niu L G et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 3, e129(2014).
[33] Zhang Y L, Tian Y, Wang H et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 13, 4041-4048(2019).
[34] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[35] Sugioka K, Cheng Y. Femtosecond laser processing for optofluidic fabrication[J]. Lab on a Chip, 12, 3576-3589(2012).
[36] Zhou X W, Liao J N, Yao Y et al. Direct laser writing of micro/nano copper structures and their applications[J]. Chinese Journal of Lasers, 48, 0802012(2021).
[37] Jiao Z Z, Li J C, Chen Z D et al. Research progress on laser processing of antireflection surfaces[J]. Chinese Journal of Lasers, 48, 0202011(2021).
[38] Shimotsuma Y, Hirao K, Kazansky P G et al. Three-dimensional micro- and nano-fabrication in transparent materials by femtosecond laser[J]. Japanese Journal of Applied Physics, 44, 4735-4748(2005).
[39] Matushiro Y, Juodkazis S, Hatanaka K et al. Regenerated volume gratings in PMMA after femtosecond laser writing[J]. Optics Letters, 42, 1632-1635(2017).
[40] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).
[41] Yong J L, Yang Q, Guo C L et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Advances, 9, 12470-12495(2019).
[42] Liu M N, Li M T, Xu S et al. Bioinspired superhydrophobic surfaces via laser-structuring[J]. Frontiers in Chemistry, 8, 835(2020).
[43] Chen G J, Hong W. Mechanochromism of structural: colored materials[J]. Advanced Optical Materials, 8, 2000984(2020).
[44] Wang Y, Shang L R, Chen G P et al. Bioinspired structural color patch with anisotropic surface adhesion[J]. Science Advances, 6, eaax8258(2020).
[45] Stratakis E, Bonse J, Heitz J et al. Laser engineering of biomimetic surfaces[J]. Materials Science and Engineering: R: Reports, 141, 100562(2020).
[46] Huang J, Jiang L, Li X W et al. Controllable photonic structures on silicon-on-insulator devices fabricated using femtosecond laser lithography[J]. ACS Applied Materials & Interfaces, 13, 43622-43631(2021).
[47] Dusser B, Sagan Z, Soder H et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Optics Express, 18, 2913-2924(2010).
[48] Wu P C, Cao X W, Zhao L et al. Dynamic structural color display based on femtosecond laser variable polarization processing[J]. Advanced Materials Interfaces, 8, 2100460(2021).
[49] Yao J W, Zhang C Y, Liu H Y et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses[J]. Applied Surface Science, 258, 7625-7632(2012).
[50] Gräf S, Kunz C, Undisz A et al. Mechano-responsive colour change of laser-induced periodic surface structures[J]. Applied Surface Science, 471, 645-651(2019).
[51] Li G Q, Li J W, Hu Y L et al. Femtosecond laser color marking stainless steel surface with different wavelengths[J]. Applied Physics A, 118, 1189-1196(2015).
[52] Nakata Y, Matsuba Y, Miyanaga N et al. Fabrication of metallic hole array metamaterials with 760 nm and 1930 nm lattice constant by interfering femtosecond laser processing[J]. Photonics and Nanostructures-Fundamentals and Applications, 17, 10-14(2015).
[53] Yong J L, Chen F, Yang Q et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).
[54] Gao X, Yan X, Yao X et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 19, 2213-2217(2007).
[55] Zhang W L, Wang D H, Sun Z N et al. Robust superhydrophobicity: mechanisms and strategies[J]. Chemical Society Reviews, 50, 4031-4061(2021).
[56] Yong J L, Yang Q, Chen F et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2, 5499-5507(2014).
[57] Yong J L, Yang Q, Chen F et al. A bioinspired planar superhydrophobic microboat[J]. Journal of Micromechanics and Microengineering, 24, 035006(2014).
[58] He X Y, Li G Q, Zhang Y B et al. Bioinspired functional glass integrated with multiplex repellency ability from laser-patterned hexagonal texturing[J]. Chemical Engineering Journal, 416, 129113(2021).
[59] Chu D K, Singh S C, Yong J L et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser Bessel beam on PTFE[J]. Advanced Materials Interfaces, 6, 1900550(2019).
[60] Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 405, 465-475(2017).
[61] Bai X, Yang Q, Fang Y et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 383, 123143(2020).
[62] Clapham P B, Hutley M C. Reduction of lens reflexion by the “moth eye” principle[J]. Nature, 244, 281-282(1973).
[63] Rahman A, Ashraf A, Xin H L et al. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells[J]. Nature Communications, 6, 5963(2015).
[64] Ibn-Elhaj M, Schadt M. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies[J]. Nature, 410, 796-799(2001).
[65] Li Q K, Cao J J, Yu Y H et al. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing[J]. Optics Letters, 42, 543-546(2017).
[66] Vorobyev A Y, Guo C L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon[J]. Optics Express, 19, A1031-A1036(2011).
[67] Papadopoulos A, Skoulas E, Mimidis A et al. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring[J]. Advanced Materials, 1901123(2019).
[68] Yao C Z, Ye Y Y, Jia B S et al. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property[J]. Applied Surface Science, 425, 1118-1124(2017).
[69] Zhang F, Duan J A, Zhou X F et al. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam[J]. Optics Express, 26, 34016-34030(2018).
[70] Li G Q, Li J W, Zhang C C et al. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity[J]. ACS Applied Materials & Interfaces, 7, 383-390(2015).
[71] Bhupathi S, Wang S C, Abutoama M et al. Femtosecond laser-induced vanadium oxide metamaterial nanostructures and the study of optical response by experiments and numerical simulations[J]. ACS Applied Materials & Interfaces, 12, 41905-41918(2020).
[72] Zhai Y Q, Han Q Q, Niu J Q et al. Microfabrication of bioinspired curved artificial compound eyes: a review[J]. Microsystem Technologies, 27, 3241-3262(2021).
[73] Land M F. Compound eyes: old and new optical mechanisms[J]. Nature, 287, 681-686(1980).
[74] Jacob F. Evolution and tinkering[J]. Science, 196, 1161-1166(1977).
[75] Lee L P, Szema R. Inspirations from biological optics for advanced photonic systems[J]. Science, 310, 1148-1150(2005).
[76] Jeong K H, Kim J, Lee L P. Biologically inspired artificial compound eyes[J]. Science, 312, 557-561(2006).
[77] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2, 751-758(2014).
[78] Liu H W, Chen F, Yang Q et al. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections[J]. Applied Physics Letters, 100, 133701(2012).
[79] Bian H, Wei Y, Yang Q et al. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process[J]. Applied Physics Letters, 109, 221109(2016).
[80] Cao X W, Chen Q D, Zhang L et al. Single-pulse writing of a concave microlens array[J]. Optics Letters, 43, 831-834(2018).
[81] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).
[82] Cao J J, Hou Z S, Tian Z N et al. Bioinspired zoom compound eyes enable variable-focus imaging[J]. ACS Applied Materials & Interfaces, 12, 10107-10117(2020).
Get Citation
Copy Citation Text
Jiaji Cao, Siyu Xiu, Jinkai Xu, Huadong Yu. Fabrication of Bioinspired Functional Micro-Nano Structures by Femtosecond Laser and Their Applications[J]. Chinese Journal of Lasers, 2022, 49(10): 1002702
Received: Nov. 30, 2021
Accepted: Jan. 14, 2022
Published Online: May. 9, 2022
The Author Email: Xu Jinkai (xujinkai@cust.edu.cn), Yu Huadong (yuhd@cust.edu.cn)