Optics and Precision Engineering, Volume. 31, Issue 19, 2910(2023)
Improved PointPillar point cloud object detection based on feature fusion
[1] BELLO S A, YU S S, WANG C et al. Review: deep learning on 3D point clouds[J]. Remote Sensing, 12, 1729(2020).
[2] [2] 邓家俊. 面向视频和点云数据的目标检测方法研究[D]. 合肥: 中国科学技术大学, 2021.DENGJ J. Object Detection for Video Sequence and Point Clouds [D]. Hefei: University of Science and Technology of China, 2021.(in Chinese)
[3] SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud[C], 770-779(2020).
[4] YANG Z T, SUN Y N, LIU S et al. 3DSSD: point-based 3D single stage object detector[C], 11037-11045(2020).
[5] ZHANG Y F, HU Q Y, XU G Q et al. Not all points are equal: learning highly efficient point-based detectors for 3D LiDAR point clouds[C], 18931-18940(2022).
[6] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C], 4490-4499(2018).
[7] YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 18, 3337(2018).
[8] LANG A H, VORA S, CAESAR H et al. PointPillars: fast encoders for object detection from point clouds[C], 12689-12697(2020).
[9] BELTRÁN J, GUINDEL C, MORENO F M et al. BirdNet: a 3D object detection framework from LiDAR information[C], 3517-3523(2018).
[10] SHI G S, LI R F, MA C.
[11] LEE S. HVPR: hybrid voxel-point representation for single-stage 3D object detection[C], 14600-14609(2021).
[12] [12] 田枫, 姜文文, 刘芳, 等. 混合体素与原始点云的三维目标检测方法[J]. 重庆理工大学学报(自然科学), 2022(11): 108-117.TIANF, JIANGW W, LIUF, et al. 3D object detection method based on mixed voxels and original point clouds[J]. Journal of Chongqing University of Technology (Natural Science), 2022(11): 108-117.(in Chinese)
[13] LIU W, ANGUELOV D, ERHAN D et al.
[14] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[15] [15] 申利华, 李波. 基于特征金字塔网络和密集网络的肺部CT图像超分辨率重建[J]. 计算机应用, 2023, 43(5): 1612-1619. doi: 10.11772/j.issn.1001-9081.2022040620SHENL H, LIB. Super-resolution reconstruction of lung CT images based on feature pyramid network and dense network[J]. Journal of Computer Applications, 2023, 43(5): 1612-1619.(in Chinese). doi: 10.11772/j.issn.1001-9081.2022040620
[16] GEIGER A. Are we ready for autonomous driving? The KITTI vision benchmark suite[C], 3354-3361(2012).
[17] YU H B, LUO Y Z, SHU M et al. DAIR-V2X: a large-scale dataset for vehicle-infrastructure cooperative 3D object detection[C], 21329-21338(2022).
[18] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[20] PARK J, LEE J Y et al.
[21] WANG Q L, WU B G, ZHU P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).
Get Citation
Copy Citation Text
Yong ZHANG, Zhiguang SHI, Qi SHEN, Yan ZHANG, Yu ZHANG. Improved PointPillar point cloud object detection based on feature fusion[J]. Optics and Precision Engineering, 2023, 31(19): 2910
Category:
Received: Mar. 30, 2023
Accepted: --
Published Online: Mar. 18, 2024
The Author Email: Zhiguang SHI (szgstone75@sina.com)