Optics and Precision Engineering, Volume. 31, Issue 19, 2910(2023)

Improved PointPillar point cloud object detection based on feature fusion

Yong ZHANG, Zhiguang SHI*, Qi SHEN, Yan ZHANG, and Yu ZHANG
Author Affiliations
  • National Key Laboratory of Science and Technology on Automatic Target Recognition, College of Electronic Science and Technology, National University of Defense Technology, Changsha410073, China
  • show less
    Figures & Tables(12)
    Structure of PointPillar network
    Structure of pillar-FFNet
    Structure of CR block
    Structure of RBNet
    CAMA module
    PR curves for four comparison algorithms on KITTI validation dataset
    Visualisation of detection results
    • Table 1. Result for 3D detection on KITTI validation dateset

      View table
      View in Article

      Table 1. Result for 3D detection on KITTI validation dateset

      AlgorithmCar(IoU=0.7)Pedestrian(IoU=0.5)Cyclist(IoU=0.5)

      mAP/%

      (middle)

      FPS/

      (frame·s-1

      easymiddlehardeasymiddlehardeasymiddlehard
      Second88.2578.5677.1454.7250.6545.9380.7263.9260.8964.3726.25
      PointPillar87.0877.5575.8254.4349.3145.5681.4563.1659.9163.3436.49
      PillarNet87.2577.7276.4951.4347.5344.4281.9563.2059.1262.8119.96
      Pillar-FFNet87.9278.1776.6256.2451.4446.7285.4765.5561.4965.0510.00
    • Table 2. Result for 3D detection on the DAIR-V2X-I validation dateset

      View table
      View in Article

      Table 2. Result for 3D detection on the DAIR-V2X-I validation dateset

      AlgorithmCar(IoU=0.7)Pedestrian(IoU=0.5)Cyclist(IoU=0.5)

      mAP/%

      (middle)

      FPS/

      (frame·s-1

      easymiddlehardeasymiddlehardeasymiddlehard
      Second80.1368.8468.8764.3560.4160.5764.6439.3239.4356.1912.69
      PointPillar80.0468.8668.8963.3562.0662.0961.5137.5137.6156.1415.13
      PillarNet80.2169.8269.8664.8960.8260.8462.9838.6640.0656.4311.42
      Pillar-FFNet80.3769.0369.0665.4462.2362.2666.2239.3539.4356.878.18
    • Table 3. Effect of different fusion methods on detection of Pillar-FFNet detection heads

      View table
      View in Article

      Table 3. Effect of different fusion methods on detection of Pillar-FFNet detection heads

      AlgorithmCarPedestrianCyclistmAP/%
      Pillar-FFNet78.1751.4465.5565.05
      experiment 177.3052.8361.6963.94
      experiment 278.2152.7662.9864.65
      experiment 374.1346.8652.3457.78
      experiment 477.3149.1962.8363.24
    • Table 4. Effect of different attention modules of Pillar-FFNet on detection

      View table
      View in Article

      Table 4. Effect of different attention modules of Pillar-FFNet on detection

      AlgorithmCarPedestrianCyclistmAP/%
      Pillar-FFNet78.1751.4465.5565.05
      experiment 577.7351.3563.6364.23
      experiment 677.7547.0463.2162.67
      experiment 777.5351.4163.8664.27
      experiment 877.9849.8660.5962.81
    • Table 5. Effect of modules designed in paper on detection

      View table
      View in Article

      Table 5. Effect of modules designed in paper on detection

      AlgorithmCarPedestrianCyclistmAP/%
      CAMA+MFHead78.1751.4465.5565.05
      CAMA78.0748.0861.2362.46
      MFHead76.8552.9464.4564.74
    Tools

    Get Citation

    Copy Citation Text

    Yong ZHANG, Zhiguang SHI, Qi SHEN, Yan ZHANG, Yu ZHANG. Improved PointPillar point cloud object detection based on feature fusion[J]. Optics and Precision Engineering, 2023, 31(19): 2910

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 30, 2023

    Accepted: --

    Published Online: Mar. 18, 2024

    The Author Email: Zhiguang SHI (szgstone75@sina.com)

    DOI:10.37188/OPE.20233119.2910

    Topics