Acta Optica Sinica, Volume. 42, Issue 6, 0600004(2022)
Multi-Dimensional Optical Monitoring Method of Marine Ecological Environment Under Complex Sea Conditions
[1] Hu C M, Lu Y C, Sun S J et al. Optical remote sensing of oil spills in the ocean: what is really possible?[J]. Journal of Remote Sensing, 2021, 1-13(2021).
[2] Sun S J, Hu C M. The challenges of interpreting oil-water spatial and spectral contrasts for the estimation of oil thickness: examples from satellite and airborne measurements of the deepwater horizon oil spill[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 2643-2658(2019).
[3] Ren G B, Guo J, Ma Y et al. Oil spill detection and slick thickness measurement via UAV hyperspectral imaging[J]. Acta Oceanologica Sinica, 41, 146-158(2019).
[4] Suo Z Y, Lu Y C, Liu J Q et al. Ultraviolet remote sensing of marine oil spills: a new approach of Haiyang-1C satellite[J]. Optics Express, 29, 13486-13495(2021).
[5] Jiao J N, Lu Y C, Hu C M et al. Quantifying ocean surface oil thickness using thermal remote sensing[J]. Remote Sensing of Environment, 261, 112513(2021).
[6] Li Y C, Liu J N, Shi H D. Research on identification of marine oil spill based on polarization characteristics[J]. Acta Photonica Sinica, 50, 0712001(2021).
[7] Kumar L, Sinha P, Taylor S et al. Review of the use of remote sensing for biomass estimation to support renewable energy generation[J]. Journal of Applied Remote Sensing, 9, 097696(2015).
[8] Li Y Z, Stumpf R P. McGillicuddy D J, Jr, et al. Dynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: satellite observations and numerical modeling[J]. Harmful Algae, 99, 101927(2020).
[9] Lee M S, Park K A, Chae J et al. Red tide detection using deep learning and high-spatial resolution optical satellite imagery[J]. International Journal of Remote Sensing, 41, 5838-5860(2020).
[10] Boufeniza R L, Alsahli M M, Bachari N I et al. Spatio-temporal quantification and distribution of diatoms and dinoflagellates associated with algal blooms and human activities in Algiers Bay (Algeria) using Landsat-8 satellite imagery[J]. Regional Studies in Marine Science, 36, 101311(2020).
[11] Li X, Shang S L, Lee Z P et al. Detection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2022).
[12] Zhu Q, Shen F, Shang P et al. Correction: Zhu, Q., et al. hyperspectral remote sensing of phytoplankton species composition based on transfer learning. remote sensing 2019, 11, 2001[J]. Remote Sensing, 12, 364(2020).
[13] Song Y, Wang N, Ding Y et al. Red tide information identification method based on GF-4 satellite remote sensing data: a case study of Qinhuangdao Sea area[J]. Technology Innovation and Application, 11, 9-14(2021).
[14] Zhang H, Zheng X S. Study on red tide remote sensing monitoring in the Bohai Sea in 2014[J]. Marine Science Bulletin, 19, 37-51(2017).
[15] Li Y D, Li R H, Chang L. Red tide monitoring along the coast of Zhejiang Province based on GOCI data[J]. Ecology and Environmental Sciences, 29, 1617-1624(2020).
[16] Ye L A, Zhang H B, Zhu Z Q et al. Study on application of red tide monitoring technology in East China Sea based on GOCI[J]. Environmental Science and Management, 45, 120-125(2020).
[17] Yang C Y, Tang D L, Ye H B. A study on retrieving chlorophyll concentration by using GF-4 data[J]. Journal of Tropical Oceanography, 36, 33-39(2017).
[18] Liu R J, Zhang J, Cui B G et al. Red tide detection based on high spatial resolution broad band satellite data: a case study of GF-1[J]. Journal of Coastal Research, 90, 120(2019).
[19] Yue C P, Li X, Bao L S et al. Using remote sensing to estimate seasonal variation in phytoplankton biomasses in the lake Wuliangsuhai[J]. Journal of Irrigation and Drainage, 39, 122-128(2020).
[20] Ren K, Cheng C, Gu G H et al. Mueller matrix-based calculating model for extracting polarization parameters in the analysis system for sea surface oil-spill[J]. Infrared Physics & Technology, 102, 103015(2019).
[21] Lu M, Wang Z L, Gao P P et al. Simulation experiment of polarization reflection characteristics of the oil slick[J]. Infrared and Laser Engineering, 49, 0426002(2020).
[22] Ma Z C, Ma X B, Si J G et al[J]. Research on the environmental temperature monitoring of the air compressor cabin of the off shore platform based on infrared temperature measurement technology Automation & Instrumentation, 2021, 189-192.
[23] Casciello D, Lacava T, Pergola N et al. Robust Satellite Techniques for oil spill detection and monitoring using AVHRR thermal infrared bands[J]. International Journal of Remote Sensing, 32, 4107-4129(2011).
[24] Todorov T, Nikolova L, Stoilov G et al. Spectral stokesmeter 1 implementation of the device[J]. Applied Optics, 46, 6662-6668(2007).
[25] Craven-Jones J, Kudenov M W, Stapelbroek M G et al. Infrared hyperspectral imaging polarimeter using birefringent prisms[J]. Applied Optics, 50, 1170-1185(2011).
[26] Chan V C, Kudenov M, Liang C et al. Design and application of the snapshot hyperspectral imaging Fourier transform (SHIFT) spectropolarimeter for fluorescence imaging[J]. Proceedings of SPIE, 8949, 894903(2014).
[27] Bills M V, Loh A, Sosnowski K et al. Handheld UV fluorescence spectrophotometer device for the classification and analysis of petroleum oil samples[J]. Biosensors and Bioelectronics, 159, 112193(2020).
[28] Wang X Q, Xiangli B, Huang M et al. Static imaging spectropolarimeter[J]. Journal of Optoelectronics·Laser, 22, 689-692(2011).
[29] Meng X, Li J X, Xu T T et al. High throughput full Stokes Fourier transform imaging spectropolarimetry[J]. Optics Express, 21, 32071-32085(2013).
[30] Zhao Y Q, Peng Q N, Yi C et al. Multiband polarization imaging[J]. Journal of Sensors, 2016, 5985673(2016).
[31] Bai C X, Li J X, Zhou J Q et al. Interferometric hyperspectral polarization imaging method based on micro-polarization array[J]. Infrared and Laser Engineering, 46, 0138003(2017).
[32] Li X, Liu S, Wang Z B et al. New method for obtaining full-stokes parameters of high-spectral polarization imaging system[J]. Spectroscopy and Spectral Analysis, 37, 3953-3958(2017).
[33] Wang Z, Qiao Y L, Hong J et al. Detecting camouflaged objects with thermal polarization imaging system[J]. Infrared and Laser Engineering, 36, 853-856(2007).
[34] Zhang C Y, Cheng H F, Chen Z H et al. Polarimetric imaging of camouflage screen in visible and infrared wave band[J]. Infrared and Laser Engineering, 38, 424-427(2009).
[35] Wang Q, Liang J Q, Liang Z Z et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 11, 92-99(2018).
[36] Mera D, Bolon-Canedo V, Cotos J M et al. On the use of feature selection to improve the detection of sea oil spills in SAR images[J]. Computers & Geosciences, 100, 166-178(2017).
[37] Konik M, Bradtke K. Object-oriented approach to oil spill detection using ENVISAT ASAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 118, 37-52(2016).
[38] Wang L, Qiu Z F, Chen Y L et al. Reflectance spectra simulation and formation mechanism in the red band of red tide waters[J]. Oceanologia et Limnologia Sinica, 47, 303-309(2016).
[39] Lee M S, Park K A, Micheli F. Derivation of red tide index and density using geostationary ocean color imager (GOCI) data[J]. Remote Sensing, 13, 298(2021).
[40] Zhang H, Zheng X S. Study on red tide remote sensing monitoring in the Bohai Sea in 2014[J]. Marine Science Bulletin, 19, 37-51(2017).
[41] Bak S H, Kim H M, Hwang D H et al. Detection technique of red tide using GOCI level 2 data[J]. Korean Journal of Remote Sensing, 32, 673-679(2016).
[42] Agusa Y, Fujihashi T, Endo K et al. Development of seawater temperature announcement system for quick and accurate red tide estimation[M]. ∥Sieminski A, Kozierkiewicz A, Nunez M, et al. Modern approaches for intelligent information and database systems. Studies in computational intelligence. Cham: Springer, 769, 245-253(2018).
[43] Presnar M D, Kerekes J P. Modeling and measurement of optical polarimetric image phenomenology in a complex urban environment[C]∥2010 IEEE International Geoscience and Remote Sensing Symposium, July 25-30, 2010, Honolulu, HI, USA., 4389-4392(2010).
[44] Tesche M, Zieger P, Rastak N et al. Reconciling aerosol light extinction measurements from spaceborne lidar observations and in situ measurements in the Arctic[J]. Atmospheric Chemistry and Physics, 14, 7869-7882(2014).
[45] Bai J Q. Study on optical scattering characteristics of atmospheric haze particles by discrete dipole approximation method[D]. Xi’an: Xidian University, 5, 7869-7882(2017).
[46] Zhang S, Peng J, Zhan J T et al. Research of the influence of non-spherical ellipsoid particle parameter variation on polarization characteristic of light[J]. Acta Physica Sinica, 65, 064205(2016).
[47] Zhang S, Zhan J T, Bai S K et al. Influence of smoke concentration on transmission characteristics of polarized light[J]. Acta Optica Sinica, 36, 0729001(2016).
[48] Jin K H, Ye J C. Annihilating filter-based low-rank Hankel matrix approach for image inpainting[J]. IEEE Transactions on Image Processing, 24, 3498-3511(2015).
[49] Bengua J A, Phien H N, Tuan H D et al. Efficient tensor completion for color image and video recovery: low-rank tensor train[J]. IEEE Transactions on Image Processing, 26, 2466-2479(2017).
[50] Mo Y, Kang X D, Duan P H et al. Attribute filter based infrared and visible image fusion[J]. Information Fusion, 75, 41-54(2021).
[51] Dong W S, Shi G M, Li X. Nonlocal image restoration with bilateral variance estimation: a low-rank approach[J]. IEEE Transactions on Image Processing, 22, 700-711(2013).
[52] Lu T, Li S T, Fang L Y et al. Spectral-spatial adaptive sparse representation for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 373-385(2016).
[53] He K M, Sun J. Image completion approaches using the statistics of similar patches[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 2423-2435(2014).
[54] Xie T, Li S T, Fang L Y et al. Tensor completion via nonlocal low-rank regularization[J]. IEEE Transactions on Cybernetics, 49, 2344-2354(2019).
[55] He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1397-1409(2013).
[56] Liu S Q, Liu M, Li P F et al. SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 2985-2992(2017).
[57] Liu L C, Chen L. Chen C L P, et al. Weighted joint sparse representation for removing mixed noise in image[J]. IEEE Transactions on Cybernetics, 47, 600-611(2017).
[58] Zhang K, Zuo W M, Chen Y J et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 26, 3142-3155(2017).
[59] Mi Z T, Zhou H, Zheng Y J et al. Single image dehazing via multi-scale gradient domain contrast enhancement[J]. IET Image Processing, 10, 206-214(2016).
[60] Yang C, Lu X, Lin Z et al. High-resolution image inpainting using multi-scale neural patch synthesis[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA., 4076-4084(2017).
[61] Fang X Z, Xu Y, Li X L et al. Robust semi-supervised subspace clustering via non-negative low-rank representation[J]. IEEE Transactions on Cybernetics, 46, 1828-1838(2016).
[62] Xie T, Li S T, Fang L Y et al. Tensor completion via nonlocal low-rank regularization[J]. IEEE Transactions on Cybernetics, 49, 2344-2354(2019).
[63] Ghorbani Z, Behzadan A H. Monitoring offshore oil pollution using multi-class convolutional neural networks[J]. Environmental Pollution, 289, 117884(2021).
[64] Casal G, Kutser T. Domínguez-Gómez J A, et al. Assessment of the hyperspectral sensor CASI-2 for macroalgal discrimination on the Ría de Vigo coast (NW Spain) using field spectroscopy and modelled spectral libraries[J]. Continental Shelf Research, 55, 129-140(2013).
[65] Le C F, Hu C M, Cannizzaro J et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 129, 75-89(2013).
[66] Jay S, Guillaume M. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data[J]. Remote Sensing of Environment, 147, 121-132(2014).
[67] Barnes B B, Garcia R, Hu C M et al. Multi-band spectral matching inversion algorithm to derive water column properties in optically shallow waters: an optimization of parameterization[J]. Remote Sensing of Environment, 204, 424-438(2018).
[68] Matthews M W, Bernard S, Evers-King H et al. Distinguishing cyanobacteria from algae in optically complex inland waters using a hyperspectral radiative transfer inversion algorithm[J]. Remote Sensing of Environment, 248, 111981(2020).
[69] Shin J, Kim S M, Kim K et al. Quantification of margalefidinium polykrikoides blooms along the South Coast of Korea using airborne hyperspectral Imagery[J]. Remote Sensing, 12, 2463(2020).
Get Citation
Copy Citation Text
Haodong Shi, Jiayu Wang, Yingchao Li, Qiang Fu, Yi Ma, Jingping Zhu, Shutao Li, Yan Ma, Huilin Jiang. Multi-Dimensional Optical Monitoring Method of Marine Ecological Environment Under Complex Sea Conditions[J]. Acta Optica Sinica, 2022, 42(6): 0600004
Category: Reviews
Received: Dec. 16, 2021
Accepted: Jan. 30, 2022
Published Online: Mar. 15, 2022
The Author Email: Jiang Huilin (cclgdxkjs@163.com)