Acta Optica Sinica, Volume. 42, Issue 6, 0600004(2022)

Multi-Dimensional Optical Monitoring Method of Marine Ecological Environment Under Complex Sea Conditions

Haodong Shi1, Jiayu Wang1, Yingchao Li1, Qiang Fu1, Yi Ma2, Jingping Zhu3, Shutao Li4, Yan Ma5, and Huilin Jiang1、*
Author Affiliations
  • 1Key Laboratory of Space Optoelectronic Technology of Jilin Province, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2First Institute of Oceanography, MNR, Qingdao, Shandong 266061, China
  • 3College of Electronic Science and Engineering, Xian Jiaotong University, Xian, Shaanxi 710049, China
  • 4College of Electrcial and Information Engineering, Hunan University, Changsha, Hunan 410082, China
  • 5Chinese People′s Liberation Army 63921, Beijing 100000, China
  • show less
    Figures & Tables(18)
    Schematic diagram of acquisition mechanism of multi-dimensional high-resolution information of marine targets
    Modeling method of oil spill film
    Modeling method of red tide particles
    Simulation process of polarization transmission model in "three-nons" environment
    Technical route of research on multi-dimensional high-resolution image reconstruction and restoration methods
    Multi-core support vector machine recognition framework
    Schematic diagram of system composition
    Spectral polarization hyperdata cube
    Infrared polarization imaging unit for sub-focal plane
    Photo of Sudoku enclosure device
    Oil polarization image
    95% confidence intervals of various sample data. (a) Visible light intensity; (b) visible light polarization; (c) visible light intensity and polarization contrast of each oil relative to seawater
    Red tide multi-dimensional observation site
    Different red tide dominant species and seawater polarization images. (a) Pseudo-nitzschia; (b) Skeletonema; (c) seawater
    Variations of polarizations of Pseudo-nitzschia, Skeletonema, and seawater with observation angle
    • Table 1. Performance parameters of representative instrument abroad for spectral polarization integrated imaging

      View table

      Table 1. Performance parameters of representative instrument abroad for spectral polarization integrated imaging

      TypeCore componentYearCountrySpectralrange /μmSpectralresolutionPolarizationcomponent
      Acousto-optic tunable filterAOTF+LCVR2014USA0.45--0.81.0--1.65 nm15 nm44
      Liquid crystaltunable filterLCTF+LCVR2002Italy0.4--0.85 nm3
      LCTF+quarterwave plate2009USA0.4--0.810 nm4
      Fractional amplitudeHolographic grating2007Bulgaria0.52--0.7512 nm4
      Computed tomographyCTIS1999USA0.44--0.7420 nm4
      Advanced secondaryslide+polarizer2005USA0.4--0.7210 nm4
      Grating dispersionPolarization grating+wave plate2010USA0.5--0.74 nm4
      Channel modulationBirefringent device2011USA1.5--5.046 cm-13
      Birefringent device2014USA0.4--0.85555 cm-14
      SnapshotPhotonic crystal filterarray detector2018Japan0.42--0.7210 nm3
      Bionic spectrum and polarizationsensor of mantis shrimp2021USA0.4--0.7524 nm3
    • Table 2. Performance parameters of national representative instrument for spectral polarization integrated imaging

      View table

      Table 2. Performance parameters of national representative instrument for spectral polarization integrated imaging

      TypeCore componentYearInstituteSpectralrange /μmSpectralresolutionPolarizationcomponent
      Acousto-optictunable filterAOTF+LCVR2015North University of China0.45--0.710 nm3
      AOTF+LCVR2015Harbin Institute of Technology0.4--0.82.5 nm3
      AOTF+LCVR2017North University of China0.4--0.755 nm4
      AOTF+LCVR2018PLA Army Academy of Artilleryand Air Defense0.45--0.952--8 nm3
      Liquid crystaladjustable filterLCTF2009Northwestern PolytechnicalUniversity0.4--0.7210 nm3
      LCTF2016Xi’an Technological University0.4--1.00.5 nm3
      Grating dispersionGrating2015Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences0.4--1.020 nm3
      Advanced waveplate+grating2017Lanzhou Institute of Physics0.4--1.010 nm3
      ModulationWollaston2009Xi’an Jiaotong University0.4--0.96180 cm-14
      Sagnac2011Xi’an Institute of Opticsand Precision Mechanics0.58--0.68800 cm-13
      Birefringent device2014Zhejiang University0.4--0.83 nm4
      Savart+ferroelectricliquid crystal (FLC)2019Nanjing University ofScience And Technology0.45--0.951.88--8.39 nm4
      Polarization spectralintensity modulation(PSIM)2019Changchun University ofScience and Technology0.4--1.02--3 nm3
      Birefringent device+FLC2019Nanjing University ofScience and Technology0.45--1.05 nm4
      SnapshotLine surface conversionfiber+micro polarizationarray detector2020Beijing Institute of SpaceMechanics and Electricity0.43--0.631 nm3
    • Table 3. Sample parameters

      View table

      Table 3. Sample parameters

      No.Oil sampleDensity /(g·mL-1)
      1Fuel0.821
      2Palm oil0.836
      3Crude oil0.824
      4Seawater1.025
      5Gasoline0.737
      6Diesel oil0.835
    Tools

    Get Citation

    Copy Citation Text

    Haodong Shi, Jiayu Wang, Yingchao Li, Qiang Fu, Yi Ma, Jingping Zhu, Shutao Li, Yan Ma, Huilin Jiang. Multi-Dimensional Optical Monitoring Method of Marine Ecological Environment Under Complex Sea Conditions[J]. Acta Optica Sinica, 2022, 42(6): 0600004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 16, 2021

    Accepted: Jan. 30, 2022

    Published Online: Mar. 15, 2022

    The Author Email: Jiang Huilin (cclgdxkjs@163.com)

    DOI:10.3788/AOS202242.0600004

    Topics