Acta Optica Sinica, Volume. 38, Issue 6, 0620002(2018)
An Neural Network Framework of Self-Learning Uncertainty
[1] Matti D, Ekenel H K, Thiran J P. Combining LiDAR space clustering and convolutional neural networks for pedestrian detection[C]. Lecce: IEEE International Conference on Advanced Video and Signal Based Surveillance, 1-6(2017).
[2] Liu C H, Li Z, Xu C et al. BRDF model for commonly used materials of space targets based on deep neural network[J]. Acta Optica Sinica, 37, 1129001(2017).
[3] Lu Y S, Li Y X, Liu B et al. Hyperspectral data haze monitoring based on deep residual network[J]. Acta Optica Sinica, 37, 1128001(2017).
[4] Li S M, Lei G Q, Fan R. Depth map super-resolution reconstruction based on deep convolutional neural networks[J]. Acta Optica Sinica, 37, 1210002(2017).
[5] Xiao J S, Liu E Y, Zhu L et al. Improved image super-resolution algorithm based on convolutional neural network[J]. Acta Optica Sinica, 37, 0318011(2017).
[8] Hou C C, He Y Q, Jiang X H et al. A deep convolutional neural network based on two-stream convolutional unit[J]. Laser & Optoelectronics Progress, 55, 021005(2018).
[10] Morchhale S, Pauca V P, Plemmons R J et al. Classification of pixel-level fused hyperspectral and lidar data using deep convolutional neural networks[C]. Los Angeles: Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1-5(2016).
[12] Du X, Ang M H, Rus D. Car detection for autonomous vehicle: LIDAR and vision fusion approach through deep learning framework[C]. Vancouver: IEEE/RSJ International Conference on Intelligent Robots and Systems, 749-754(2017).
[13] Dieterle T, Particke F, Patino-Studencki L et al. Sensor data fusion of LIDAR with stereo RGB-D camera for object tracking[A]. Glasgow: 2017 IEEE Sensors, 1-3(2017).
[14] Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]. New York: Proceedings of the 33rd International Conference on Machine Learning, 48, 1050-1059(2016).
[17] Teerapittayanon S. McDanel B, Kung H T. BranchyNet: fast inference via early exiting from deep neural networks[C]. Cancun: 23rd International Conference on Pattern Recognition, 2464-2469(2016).
[19] Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition, 2261-2269(2017).
[21] He K, Zhang X, Ren S et al. Deep Residual Learning for Image Recognition[C]. Las Vegas: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).
[22] Wan L, Zeiler M, Zhang S et al. Regularization of neural networks using dropconnect[C]. Atlanta: Proceedings of the 30th International Conference on Machine Learning, 28, 1058-1066(2013).
[23] Barrow E, Eastwood M, Jayne C. Selective dropout for deep neural networks[C]. Kyoto: Proceedings of the 23rd International Conference on Neural Information Processing, 519-528(2016).
[24] Isobe S, Arai S. Deep convolutional encoder-decoder network with model uncertainty for semantic segmentation[C]. IEEE International Conference on Innovations in Intelligent Systems and Applications, 365-370(2017).
[25] Goodfellow I, Warde-Farley D, Mirza M et al. Maxout networks[C]. Atlanta: 2013 International Conference on Machine Learning, 28, 1319-1327(2013).
[26] Chang J-R, Chen Y-S[2018-4-24]. Batch-normalized maxout network in network [2018-4-24].https://arxiv., org/abs/1511, 02583.
[27] Krizhevsky A, Hinton G E. Learning multiple layers of features from tiny images[R]. CiteSeerX(2009).
Get Citation
Copy Citation Text
Hanqing Sun, Yanwei Pang. An Neural Network Framework of Self-Learning Uncertainty[J]. Acta Optica Sinica, 2018, 38(6): 0620002
Category: Optics in Computing
Received: Dec. 29, 2017
Accepted: --
Published Online: Jul. 9, 2018
The Author Email: Sun Hanqing (HQSun@tju.edu.cn)