Acta Optica Sinica, Volume. 38, Issue 6, 0620002(2018)

An Neural Network Framework of Self-Learning Uncertainty

Hanqing Sun* and Yanwei Pang
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(11)
    Architecture of ULNN
    (a) Input data construction procedure of ULNN-rep; (b) input data construction procedure of ULNN-aug
    Components of an UL layer
    Curves of uncertainty learning with different βs (on CIFAR-10, vertical-axis is a logarithmic coordinate)
    Curves of UL (CIFAR-10)
    • Table 1. Comparison between ULNN-rep and ULNN-aug

      View table

      Table 1. Comparison between ULNN-rep and ULNN-aug

      CIFAR-10CIFAR-100
      AccuracyUncertaintyAccuracyUncertainty
      DenseNet-rep91.6%0.035668.3%0.1166
      ULNN-rep92.4%0.001069.3%0.0066
      ULNN-aug94.3%0.082874.2%0.1480
    • Table 2. Impact of input repetition number nu

      View table

      Table 2. Impact of input repetition number nu

      nuCIFAR-10CIFAR-100
      AccuracyUncertaintyAccuracyUncertainty
      294.8%0.057975.9%0.0753
      394.9%0.065975.6%0.0762
      495.0%0.071775.7%0.0743
      594.8%0.076175.6%0.0740
    • Table 3. Impact of UL weight β

      View table

      Table 3. Impact of UL weight β

      βCIFAR-10CIFAR-100
      1.5(=nu/2)0.07180.1076
      10.08280.1480
      0.10.21070.8285
      0.010.69362.4774
    • Table 4. Impact of Dropout on ULNN-aug

      View table

      Table 4. Impact of Dropout on ULNN-aug

      Dropout ratioCIFAR-10CIFAR-100
      AccuracyUncertaintyAccuracyUncertainty
      0.294.8%0.075775.2%0.1417
      0.194.9%0.068775.6%0.1077
      0.0595.1%0.057975.9%0.0753
    • Table 5. Comparison of validation result with original training parameters in DenseNet

      View table

      Table 5. Comparison of validation result with original training parameters in DenseNet

      CIFAR-10CIFAR-100
      AccuracyUncertaintyAccuracyUncertainty
      DenseNet + data aug.94.8%1.519075.6%1.3564
      ULNN-aug95.1%0.057975.9%0.0753
    • Table 6. Semantic segmentation results of ULNN SegNet on CamVid

      View table

      Table 6. Semantic segmentation results of ULNN SegNet on CamVid

      AccuracymIoUUncertainty
      Bayesian SegNet85.9%51.4%452.7
      ULNN SegNet87.1%52.0%50.63
    Tools

    Get Citation

    Copy Citation Text

    Hanqing Sun, Yanwei Pang. An Neural Network Framework of Self-Learning Uncertainty[J]. Acta Optica Sinica, 2018, 38(6): 0620002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Dec. 29, 2017

    Accepted: --

    Published Online: Jul. 9, 2018

    The Author Email: Sun Hanqing (HQSun@tju.edu.cn)

    DOI:10.3788/AOS201838.0620002

    Topics