Chinese Journal of Lasers, Volume. 47, Issue 5, 0500001(2020)
Development of Semiconductor Lasers
[1] Epperlein P W. Semiconductor laser engineering, reliability and diagnostics[M]. Oxford, UK: John Wiley & Sons Ltd(2013).
[2] Zhang J, Zhao H P, Tansu N. Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes[J]. Applied Physics Letters, 98, 171111(2011).
[3] Murayama M, Nakayama Y, Yamazaki K et al. Watt-class green (530 nm) and blue (465 nm) laser diodes[J]. Physica Status Solidi, 215, 1700513(2018).
[4] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).
[5] Nathan M I, Dumke W P, Burns G et al. Stimulated emission of radiation from GaAs p-n junctions[J]. Applied Physics Letters, 1, 62-64(1962).
[6] Quist T M, Rediker R H, Keyes R J et al. Semiconductor maser of GaAs[J]. Applied Physics Letters, 1, 91-92(1962).
[7] Kroemer H. A proposed class of hetero-junction injectionlasers[J]. Proceedings of the IEEE, 51, 1782-1783(1963).
[8] Panish M B, Hayashi I, Sumski S. Double-heterostructure injection lasers with room-temperature thresholds as low as 2300 A/cm 2[J]. Applied Physics Letters, 16, 326-327(1970).
[9] Soda H, Iga K I, Kitahara C et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 18, 2329-2330(1979).
[10] Iga K, Koyama F, Kinoshita S. Surface emitting semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 24, 1845-1855(1988).
[11] Wang S. Proposal of periodic layered waveguide structures for distributedlasers[J]. Journal of Applied Physics, 44, 767-780(1973).
[12] Wang Q M. The development and development of semiconductor opto-electronics in the Institute of Semiconductors. C]∥Anthology of the 40th Anniversary of the Institute of Semiconductors, Chinese Academy of Sciences, 109(2000).
[13] Peng H D, Ma C H, Wang X J et al. 1.5 μm InGaAsP/InP P substrate buried crescent (PBC) lasers[J]. Chinese Journal of Semiconductors, 10, 143-145(1989).
[14] Wang W, Zhang J Y, Wang X J et al. Low threshold current 1.5 μm PBR-DFB lasers[J]. Chinese Journal of Semiconductors, 13, 279-286, 327(1992).
[15] Xiao J W, Xu J Y, Yang G W et al. Extremely low threshold current, buried-heterostructure strained InGaAs-GaAs multiquantum well lasers[J]. Electronics Letters, 28, 154-156(1992).
[16] Chen L H. Quantum well lasers and their applications[J]. International Journal of High Speed Electronics & Systems, 7, 373-381(1996).
[17] Chen L H. The development of quantum well optoelectronic devices and formation of Chinese optoelectronic industry[J]. Engineering Science, 1, 75-78(1999).
[18] Zhang S M, Zhu J J, Li D R et al. Characteristics of domain wavelength and light output-power of GaN-based LED[J]. Journal of Semiconductiors, 26, 158-160(2005).
[19] Chen L H, Ye X J, Zhong M. Gallium nitride based blue laser diodes[J]. Physics, 32, 302-308(2003).
[20] Yang H, Chen L H, Zhang S M et al. Material growth and device fabrication of GaN-based blue-violet laser diodes[J]. Journal of Semiconductors, 26, 414-417(2005).
[21] Cao C S, Fan L, Ai I et al. Recent development of high-power-efficiency 50 W CW TE/TM polarized 808 nm diode laser bar at lasertel[J]. Proceedings of SPIE, 7583, 75830L(2010).
[22] Wang Z F, Li T, Yang G W et al. High power, high efficiency continuous-wave 808 nm laser diode arrays[J]. Optics & Laser Technology, 97, 297-301(2017).
[24] Pietrzak A, Woelz M, Huelsewede R et al. Heading to 1 kW levels with laser bars of high-efficiency and emission wavelength around 880 nm and 940 nm[J]. Proceedings of SPIE, 9348, 93480E(2015).
[25] Kanskar M, Chen Z G, Dong W M et al. High power and high efficiency 1.8-kW pulsed diode laser bar[J]. Journal of Photonics for Energy, 7, 016003(2017).
[29] Bao L, Kanskar M, Devito M et al. High reliability demonstrated on high-power and high-brightness diode lasers[J]. Proceedings of SPIE, 9348, 93480C(2015).
[30] Kaifuchi Y, Yamagata Y, Nogawa R et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[J]. Proceedings of SPIE, 10086, 100860D(2017).
[33] Matthew P, Victor R, Matthew E et al. High-power high-efficiency laser diodes at JDSU[J]. Proceedings of SPIE, 6456, 64560G(2007).
[34] Frevert C, Bugge F, Crump P et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K: analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K[J]. Proceedings of SPIE, 9733, 97330L(2016).
[35] Zhao Y L, Wang Z F, Yang G W et al. Research on 940 nm kilowatt high efficiency quasi-continuous diode laser bars[J]. Proceedings of SPIE, 11170, 1117040(2019).
[36] Abdullah D, Matthew P, Richard D et al. 29. 5 W continuous wave output from 100 μm wide laser diode[J]. Proceedings of SPIE, 9348, 93480G(2015).
[37] Gapontsev V, Moshegov N, Berezin I et al. Highly-efficient high-power pumps for fiber lasers[J]. Proceedings of SPIE, 10086, 1008604(2017).
[38] Kaifuchi Y, Yoshida K, Yamagata Y et al. Enhanced power conversion efficiency in 900 nm range single emitter broad stripe laser diodes maintaining high power operability[J]. Proceedings of SPIE, 10900, 109000F(2019).
[40] Sebastian J, Hülsewede R, Pietrzak A et al. Research on 9xx nm diode laser for direct and pumping applications[J]. Proceedings of SPIE, 9255, 92550Y(2015).
[41] Kaul T, Erbert G, Crump P et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs[J]. Semiconductor Science and Technology, 33, 035005(2018).
[42] Lian P, Yin T, Gao G et al. Novel coupled multi-active region high power semiconductor lasers cascaded via tunnel junction[J]. Acta Physica Sinica, 49, 2374-2377(2000).
[45] Si D H, Li J J, Fu Y Y et al. 905 nm uncoupled double active region semiconductor laser with tunnel junction[J]. Journal of Optoelectronics·Laser, 27, 139-144(2016).
[46] Knigge A, Christopher H, Liero A et al. Wavelength stabilized high pulse power laser bars for line-flash automotive LIDAR[J]. Proceedings of SPIE, 11262, 112620F(2019).
[47] Knigge A, Klehr A, Wenzel H et al. Wavelength-stabilized high-pulse-power laser diodes for automotive LiDAR[J]. Physica Status Solidi, 215, 1700439(2018).
[48] Excelitas Technologies[2020-04-12]. 905 nm pulsed laser semiconductor diodes datasheet [2020-04-12].https:∥www. excelitas. com/product-category/905nm-pulsed-semiconductor-laser-diodes..
[50] Qiu Y Z, Xie Y H, Wang W M et al. Ultra-high-power and high-efficiency 905 nm pulsed laser for LiDAR. [C]∥2019 IEEE 4th Optoelectronics Global Conference (OGC), September 3-6, 2019. Shenzhen, China. IEEE, 32-35(2019).
[51] Kuchta D M, Pepeljugoski P, Kwark Y. VCSEL modulation at 20 Gb/s over 200 m of multimode fiber using a 3. 3 V SiGe laser driver IC. [C]∥Leos Summer Topical Meeting., 941906(2001).
[52] Johnson R H, Serkland D K. 17 G directly modulated datacom VCSELs. [C]∥2008 Conference on Lasers and Electro-Optics, May 4-9, 2008. San Jose, CA, USA. IEEE, CPDB2(2008).
[53] Westbergh P, Gustavsson J S. Ko'gel B, et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL[J]. Electronics Letters, 46, 1014-1016(2010).
[55] Kuchta D M, Rylyakov A V, Schow C L et al. 64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL. [C]∥Optical Fiber Communication Conference, San Francisco, California. Washington, D. C. : OSA(2014).
[56] Kuchta D M, Rylyakov A V, Doany F E et al. A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link[J]. IEEE Photonics Technology Letters, 27, 577-580(2015).
[57] Haglund E, Larsson A, Geen M et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/S[J]. Electronics Letters, 51, 1096-1098(2015).
[58] Barve A V. -08-22[P]. Yuen A. Compact emitter design for a vertical-cavity surface-emitting laser: US009742153B1.(2017).
[59] Moench H, Gronenborn S, Gu X et al. VCSELs in short-pulse operation for time-of-flight applications[J]. Proceedings of SPIE, 10552, 105520G(2018).
[60] Okur S, Scheller M, Miglo A et al. High-power VCSEL arrays with customized beam divergence for 3D sensing applications[J]. Proceedings of SPIE, 10938, 109380F(2019).
[61] Yu H Y, Yao S, Zhang H M et al. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers[J]. Acta Physica Sinica, 68, 064207(2019).
[62] Khan Z, Shih J C, Chao R L et al. High-brightness and high-speed vertical-cavity surface-emitting laser arrays[J]. Optica, 7, 267-275(2020).
[63] Jean-Francois S, Chuni L, Viktor K et al. High-power vertical-cavity surface-emitting arrays[J]. Proceedings of SPIE, 6876, 68760D(2008).
[65] Zhou D L, Seurin J F, Xu G Y et al. Progress on high-power high-brightness VCSELs and applications[J]. Proceedings of SPIE, 9381, 93810B(2015).
[67] Zhou D L, Seurin J F, Xu G Y et al. Progress on high-power 808 nm VCSELs and applications[J]. Proceedings of SPIE, 10122, 1012206(2017).
[68] Warren M E, Podva D, Preethi D C et al. Low-divergence high-power VCSEL arrays for lidar application[J]. Proceedings of SPIE, 10552, 105520E(2018).
[70] Tournié E, Baranov A N. Mid-infrared semiconductor lasers[M]. ∥Advances in Semiconductor Lasers. France: Elsevier, 183-226(2012).
[71] Chen J, Hosoda T, Tsvid G et al. Type-I GaSb based diode lasers operating at room temperature in 2 to 3.5 μm spectral region[J]. Proceedings of SPIE, 7686, 76860S(2010).
[72] Shterengas L, Kipshidze G, Hosoda T et al. Cascade pumping of 1.9-3.3 μm type-I quantum well GaSb-based diode lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-8(2017).
[73] Hosoda T, Feng T, Shterengas L et al. High power cascade diode lasers emitting near 2 μm[J]. Applied Physics Letters, 108, 131109(2016).
[75] Chichkov N B, Yadav A, Zherebtsov E et al. Wavelength-tunable, GaSb-based, cascaded type-I quantum-well laser emitting over a range of 300 nm[J]. IEEE Photonics Technology Letters, 30, 1941-1943(2018).
[78] Yang C A, Xie S W, Zhang Y et al. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm[J]. Applied Physics Letters, 114, 021102(2019).
[79] Müller A, Beck M, Faist J et al. Electrically tunable, room-temperature quantum-cascade lasers[J]. Applied Physics Letters, 75, 1509-1511(1999).
[80] Rochat M, Hofstetter D, Beck M et al. Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition[J]. Applied Physics Letters, 79, 4271-4273(2001).
[81] Lu Q Y, Razeghi M. Recent advances in room temperature, high-power terahertz quantum cascade laser sources based on difference-frequency generation[J]. Photonics, 3, 42(2016).
[82] Razeghi M, Lu Q Y, Bandyopadhyay N et al. Quantum cascade lasers: from tool to product[J]. Optics Express, 23, 8462-8475(2015).
[83] Rothman L S. The evolution and impact of the HITRAN molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 1565-1567(2010).
[84] Revin D G, Cockburn J W, Steer M J et al. InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm[J]. Applied Physics Letters, 90, 021108(2007).
[85] Bandyopadhyay N, Bai Y, Slivken S et al. High power operation of λ ~5.2-11 μm strain balanced quantum cascade lasers based on the same material composition[J]. Applied Physics Letters, 105, 071106(2014).
[86] Szerling A, Slivken S, Razeghi M. High peak power 16 μm InP-related quantum cascade laser[J]. Opto-Electronics Review, 25, 205-208(2017).
[87] Chevalier P, Piccardo M, Anand S et al. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser[J]. Applied Physics Letters, 112, 061109(2018).
[88] Yan F L, Zhang J C, Jia Z W et al. High-power phase-locked quantum cascade laser array emitting at λ~4.6 μm[J]. AIP Advances, 6, 035022(2016).
[89] Bai Y, Bandyopadhyay N, Tsao S et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 98, 181102(2011).
[90] Lyakh A, Suttinger M, Go R et al. 5. 6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 109, 121109(2016).
[92] Lu Q Y, Razeghi M, Slivken S et al. High power frequency comb based on mid-infrared quantum cascade laser at λ ~9 μm[J]. Applied Physics Letters, 106, 051105(2015).
[93] Vijayraghavan K, Jiang Y, Jang M et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers[J]. Nature Communications, 4, 2021(2013).
[94] Laffaille P, Moreno J C, Teissier R et al. High temperature operation of short wavelength InAs-based quantum cascade lasers[J]. AIP Advances, 2, 022119(2012).
[96] Loghmari Z, Bahriz M, Meguekam A et al. Continuous wave operation of InAs-based quantum cascade lasers at 20 μm[J]. Applied Physics Letters, 115, 151101(2019).
[97] Soibel A, Wright M W, Farr W et al. High-speed operation of interband cascade lasers[J]. Electronics Letters, 45, 264-265(2009).
[99] Li L, Jiang Y C, Ye H et al. Low-threshold InAs-based interband cascade lasers operating at high temperatures[J]. Applied Physics Letters, 106, 251102(2015).
[100] Jiang Y C, Li L, Ye H et al. InAs-based single-mode distributed feedback interband cascade lasers[J]. IEEE Journal of Quantum Electronics, 51, 1-7(2015).
Get Citation
Copy Citation Text
Lianghui Chen, Guowen Yang, Yuxian Liu. Development of Semiconductor Lasers[J]. Chinese Journal of Lasers, 2020, 47(5): 0500001
Category: reviews
Received: Apr. 14, 2020
Accepted: Apr. 28, 2020
Published Online: May. 12, 2020
The Author Email: Chen Lianghui (chenlh@semi.ac.cn), Yang Guowen (yangguowen@opt.ac.cn)