Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1015005(2025)

COGCN Model Suitable for Point Cloud Classification and Segmentation Tasks

Weichao Chen1, Lingchen Zhang2, Ronghua Chi2,3, Zhenbo Yang2, Qi Liu1, and Hongxu Li2,3、*
Author Affiliations
  • 1Wuxi Institute of Technology, Nanjing University of Information Science and Technology, Wuxi 214101, Jiangsu , China
  • 2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 3Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System, Wuxi University, Wuxi 214105, Jiangsu , China
  • show less
    References(31)

    [9] Charles R Q, Yi L, Su H et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C], 5105-5114(2017).

    [18] Wang B L, Huo Z Q. Research on feature extraction of 3D point cloud based on MANet[J]. Computer Engineering and Applications, 58, 267-275(2022).

    [29] Cao J, Peng Y Q, Fan L K et al. 3D object detection based on voxel self-attention auxiliary networks[J]. Laser & Optoelectronics Progress, 61, 2415004(2024).

    [30] Dong H X, An Y, Xie L R et al. Semantic segmentation of large‑scale laser point cloud in mines based on local feature enhancement[J]. Chinese Journal of Lasers, 51, 1710002(2024).

    [31] Dai C G, Zhang Y J, Ji H L et al. Place recognition method based on feature fusion for LiDAR point clouds[J]. Acta Optica Sinica, 45, 0628002(2025).

    Tools

    Get Citation

    Copy Citation Text

    Weichao Chen, Lingchen Zhang, Ronghua Chi, Zhenbo Yang, Qi Liu, Hongxu Li. COGCN Model Suitable for Point Cloud Classification and Segmentation Tasks[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1015005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 24, 2024

    Accepted: Nov. 1, 2024

    Published Online: Apr. 24, 2025

    The Author Email: Hongxu Li (hongxuli@cwxu.edu.cn)

    DOI:10.3788/LOP242046

    CSTR:32186.14.LOP242046

    Topics