Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1015005(2025)

COGCN Model Suitable for Point Cloud Classification and Segmentation Tasks

Weichao Chen1, Lingchen Zhang2, Ronghua Chi2,3, Zhenbo Yang2, Qi Liu1, and Hongxu Li2,3、*
Author Affiliations
  • 1Wuxi Institute of Technology, Nanjing University of Information Science and Technology, Wuxi 214101, Jiangsu , China
  • 2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 3Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System, Wuxi University, Wuxi 214105, Jiangsu , China
  • show less
    Figures & Tables(15)
    Structure of CSEConv module
    Structure of offset attention module
    Structure of COGCN classification network
    Structure of COGCN segmentation network
    Structure of spatial transformation network
    Visualization comparison of component segmentation by different methods
    Visualization comparison of semantic segmentation by different methods
    Visualization comparison of ablation experiments
    Comparison of OA under different numbers of point clouds by different methods
    • Table 1. OA of different models on the ModelNet40 dataset

      View table

      Table 1. OA of different models on the ModelNet40 dataset

      MechanismModelInputOA
      MLPPointNet1000 points+normal89.2
      PointNet++1000 points90.7
      PointNN171000 points81.8
      MANet181000 points92.5
      ConvPointCNN1000 points92.5
      PointWeb1000 points+normal92.3
      PointConv1000 points+normal92.5
      KPConv1000 points92.9
      Hybrid-CNN191000 points92.6
      SACNN1000 points93.2
      AttentionPCT201000 points93.2
      3DCTN211000 points92.7
      GraphSpecGCN1000 points92.1
      DGCNN1000 points92.9
      GCN3D1000 points93.0
      Proposed1000 points93.2
    • Table 2. Segmentation IoU results of different models on the ShapeNet dataset

      View table

      Table 2. Segmentation IoU results of different models on the ShapeNet dataset

      CategoryPointNetPointNet++PCNN22DGCNN3D-GCN14DT-Net23PointCutMix24AG-Net25GCN3DSACNNProposed
      mIoU83.785.185.185.285.185.685.585.485.285.486.1
      Airplane83.482.482.484.083.183.082.684.183.384.585.9
      Bag78.779.080.183.484.081.485.983.278.876.484.2
      Cap82.587.785.586.786.684.383.786.083.281.887.4
      Car74.977.379.577.877.578.478.378.877.578.481.3
      Chair89.690.890.890.690.390.990.790.690.891.691.4
      Earphone73.071.873.274.774.174.372.576.975.876.878.3
      Guitar91.591.091.391.290.991.090.991.990.891.692.4
      Knife85.985.986.087.586.487.387.788.486.088.587.1
      Lamp80.883.785.082.883.884.784.382.383.885.584.2
      Laptop95.395.395.795.795.695.695.396.095.295.896.1
      Motor65.271.673.266.366.869.070.765.566.460.672.5
      Mug93.094.194.894.994.894.495.193.793.492.796.0
      Pistol81.281.383.381.181.382.582.484.281.380.583.1
      Rocket57.958.751.063.559.659.062.364.251.256.250.8
      Skateboard72.876.475.074.575.776.474.976.867.173.777.0
      Table80.682.681.882.682.883.583.480.683.082.883.1
    • Table 3. Semantic segmentation results of different models on the S3DIS dataset

      View table

      Table 3. Semantic segmentation results of different models on the S3DIS dataset

      MethodmIoUOA
      PointNet47.678.5
      PointNet++53.5
      SegCloud48.9
      ShapeContextNet2652.781.6
      DGCNN56.184.1
      RSNet2751.9
      AGNet59.685.9
      SDANet2859.6
      Proposed60.385.7
    • Table 4. Ablation experimental results for classification network

      View table

      Table 4. Ablation experimental results for classification network

      CSEConvOffset attentionOA
      91.7
      90.3
      93.2
    • Table 5. Ablation experimental results for segmentation network

      View table

      Table 5. Ablation experimental results for segmentation network

      CSEConvOffset attentionmIoU
      85.7
      84.6
      86.1
    • Table 6. Comparison of OA under different numbers of point clouds by different methods

      View table

      Table 6. Comparison of OA under different numbers of point clouds by different methods

      Number of point cloudCOGCNDGCNNPointNet
      25691.047.181.8
      51291.786.586.7
      76892.491.988.5
      102493.292.989.2
    Tools

    Get Citation

    Copy Citation Text

    Weichao Chen, Lingchen Zhang, Ronghua Chi, Zhenbo Yang, Qi Liu, Hongxu Li. COGCN Model Suitable for Point Cloud Classification and Segmentation Tasks[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1015005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 24, 2024

    Accepted: Nov. 1, 2024

    Published Online: Apr. 24, 2025

    The Author Email: Hongxu Li (hongxuli@cwxu.edu.cn)

    DOI:10.3788/LOP242046

    CSTR:32186.14.LOP242046

    Topics