Opto-Electronic Engineering, Volume. 52, Issue 3, 240275(2025)

Construction of convolutional neural network model for micro-scale bump on metal pipe fittings

Zihao Liu1,2, Guohao Tao3, Feng Xue4, Yebo Lu5, and Jun Yang2、*
Author Affiliations
  • 1College of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • 2College of Artificial Intelligence, Jiaxing University, Jiaxing, Zhejiang 314100, China
  • 3School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • 4Zhejiang Master Hydraulic Fittings Co., Ltd., Jiaxing, Zhejiang 316002, China
  • 5School of Mechanical Engineering, Jiaxing University, Jiaxing, Zhejiang 314100, China
  • show less
    References(28)

    [1] Wu L, Hao H Y, Song Y. A review of metal surface defect detection based on computer vision[J]. Acta Autom Sin, 50, 1261-1283(2024).

    [4] Chen W, Zou B, Yang J Z et al. The machined surface defect detection of improved superpixel segmentation and two-level region aggregation based on machine vision[J]. J Manuf Process, 80, 287-301(2022).

    [6] Sun Z J, Wang X H, Luo F et al. Scale adaptive attention network for accurate defect detection from metal parts[J]. IEEE Access, 12, 131035-131043(2024).

    [7] Zhu X F, Wang Q M, Zhang B F et al. An improved feature enhancement CenterNet model for small object defect detection on metal surfaces[J]. Adv Theory Simul, 7, 2301230(2024).

    [8] Dong H W, Song K C, He Y et al. PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Trans Industr Inform, 16, 7448-7458(2020).

    [9] Peng T, Zheng Y, Zhao L et al. Industrial product surface anomaly detection with realistic synthetic anomalies based on defect map prediction[J]. Sensors, 24, 264(2024).

    [10] Xie X, Xu L, Li X L et al. A high-effective multitask surface defect detection method based on CBAM and atrous convolution[J]. J Adv Mech Des Syst Manuf, 16, JAMDSM0063(2022).

    [11] Xue P, Jiang C H, Pang H L. Detection of various types of metal surface defects based on image processing[J]. Trait Signal, 38, 1071-1078(2021).

    [12] Chen T, Saxena S, Li L L et al. Pix2seq: a language modeling framework for object detection[C](2021).

    [15] Li S, Wang Z C, Zhang X D et al. Robust image steganography against general downsampling operations with lossless secret recovery[J]. IEEE Trans Dependable Secure Comput, 21, 340-352(2024).

    [17] Lin Y, Tu Y, Dou Z. An improved neural network pruning technology for automatic modulation classification in edge devices[J]. IEEE Trans Veh Technol, 69, 5703-5706(2020).

    [21] Guo C Z, Li K, Li H et al. Deep convolution neural network method for remote sensing image quality level classification[J]. Geomatics Inf Sci Wuhan Univ, 47, 1279-1286(2022).

    [22] Tao G H, Liu Z H, Xu X M et al. Construction of on-line image acquisition device for cylindrical metal pipe fittings and control optimization of key parameters[J]. J Metrol, 45, 1494-1501(2024).

    [23] Ren S Q, He K M, Sun R J. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).

    [26] Wang A, Chen H, Liu L H et al. YOLOv10: real-time end-to-end object detection[C](2024).

    [28] Feng B X, Cai J P. PCB defect detection via local detail and global dependency information[J]. Sensors, 23, 7755(2023).

    Tools

    Get Citation

    Copy Citation Text

    Zihao Liu, Guohao Tao, Feng Xue, Yebo Lu, Jun Yang. Construction of convolutional neural network model for micro-scale bump on metal pipe fittings[J]. Opto-Electronic Engineering, 2025, 52(3): 240275

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Nov. 26, 2024

    Accepted: Feb. 17, 2025

    Published Online: May. 22, 2025

    The Author Email: Jun Yang (杨俊)

    DOI:10.12086/oee.2025.240275

    Topics