Opto-Electronic Engineering, Volume. 52, Issue 3, 240275(2025)

Construction of convolutional neural network model for micro-scale bump on metal pipe fittings

Zihao Liu1,2, Guohao Tao3, Feng Xue4, Yebo Lu5, and Jun Yang2、*
Author Affiliations
  • 1College of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • 2College of Artificial Intelligence, Jiaxing University, Jiaxing, Zhejiang 314100, China
  • 3School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • 4Zhejiang Master Hydraulic Fittings Co., Ltd., Jiaxing, Zhejiang 316002, China
  • 5School of Mechanical Engineering, Jiaxing University, Jiaxing, Zhejiang 314100, China
  • show less
    Figures & Tables(17)
    Special metal pipe surface micro-scale bump detection system
    Comparison of original YOLOv9 and improved YOLOV9-MM network structure
    The downsampling operation. (a) Convolution downsampling; (b) Downsampling for maximum pooling; (c) Downsampling for average pooling
    MCDown module
    Dysample module
    InnerIoU regression process
    Imaging with different magnification
    Comparison of defect detection performance at different magnifications
    Image marking in dataset
    Thermal maps and visualization of the results of micro-scale bump detection on metal surfaces. (a) Original images; (b) The detection results of YOLOv9; (c) Thermal maps for YOLOv9 detection; (d) The detection results of YOLOv9-MM; (e) Thermal maps for YOLOv9-MM detection
    Comparison of PCB defect detection results
    Thermal map and result visualization of PCB defect detection. (a) The test result of YOLOv9; (b) Thermal map for YOLOv9 detection; (c) Detection result of YOLOv9-MM; (d) Thermal map of YOLOv9-MM detection
    • Table 1. Models and specifications of components in the image acquisition system

      View table
      View in Article

      Table 1. Models and specifications of components in the image acquisition system

      Instrument indicators and parametersAn experimental instrument is needed to construct a micro-scale bump detection system for metal pipe fittings
      Industrial CCD cameraLensRing light sourceMove the lever up and down3D adjustment leverFitting typeRotation table
      Instrument typeMV-CS016-10UCWT-G0745PRC-200360X-B1LZ-500HTZ120KCM82-4NC16 CM/5-100S/15 KG
      Parameter nameResolution/pixelMagnification/XLuminous power/WRange of movement/mmStretch range/mmWidth× Height/mmRotational speed/rpm
      Parameter value1440×1080[0.7,4][2.8,12.1][0,461][−10,100]8.8×24[0,1.54]
    • Table 2. Multi-magnification experimental parameters

      View table
      View in Article

      Table 2. Multi-magnification experimental parameters

      Magnification0.7×1.0×2.0×3.0×4.0×
      Exposure time/ms1015202530
      Depth of field/mm1.401.300.960.620.28
      Field of view/mm (1/3CCD diagonal)8.68.06.14.22.3
    • Table 3. Removal of auxiliary reversible branch experimental results

      View table
      View in Article

      Table 3. Removal of auxiliary reversible branch experimental results

      Network structuremAP@0.5/%Param/MFLOPs/G
      YOLOv9s65.248.6238.9
      - Auxiliary invertible branch66.930.0118.5
    • Table 4. Ablation experimental results

      View table
      View in Article

      Table 4. Ablation experimental results

      NumberMCDownDynamic integration of deep featuresInner_MDPIoUP/%R/%mAP@0.5/%FLOPs/GFPS/(f/s)
      66.257.166.9118.5133
      70.161.768.7101.8108
      72.063.969.4145.783
      74.357.769.1116.8138
      76.458.569.8130.388
      69.957.969.3144.692
      77.260.868.3101.8130
      71.161.570.2129.390
    • Table 5. Comparative experimental results

      View table
      View in Article

      Table 5. Comparative experimental results

      MethodmAP@0.5/%FLOPs/GFPS/(f/s)Param/M
      Faster RCNN56.936.41824.1
      YOLOv5s62.115.913113.7
      YOLOv765.5104.716118.1
      YOLOv8s64.728.430321.5
      FCOS59.733.52553.0
      YOLOv10s65.824.845.98.2
      YOLOv11s65.321.353.29.4
      YOLOv9s65.2238.98748.6
      YOLOv9-MM(ours)70.2129.39022.7
    Tools

    Get Citation

    Copy Citation Text

    Zihao Liu, Guohao Tao, Feng Xue, Yebo Lu, Jun Yang. Construction of convolutional neural network model for micro-scale bump on metal pipe fittings[J]. Opto-Electronic Engineering, 2025, 52(3): 240275

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Nov. 26, 2024

    Accepted: Feb. 17, 2025

    Published Online: May. 22, 2025

    The Author Email: Jun Yang (杨俊)

    DOI:10.12086/oee.2025.240275

    Topics