Chinese Journal of Lasers, Volume. 49, Issue 15, 1507406(2022)

Insights into Cellular Metabolic Differences among Yeast Strains in Ethanol Fermentation by Raman Spectroscopy and Multivariate Curve Resolution Algorithm

Haisheng Ou1,2, Pengfei Zhang3, Xiaochun Wang2, Ying Chen2, Junxian Liu1、**, and Guiwen Wang2、*
Author Affiliations
  • 1College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, Guangxi, China
  • 2Biophysical and Environmental Sciences Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
  • 3School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(49)

    [1] Auesukaree C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation[J]. Journal of Bioscience and Bioengineering, 124, 133-142(2017).

    [2] Burphan T, Tatip S, Limcharoensuk T et al. Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae[J]. Scientific Reports, 8, 13069(2018).

    [3] Wu R Z, Chen D, Cao S W et al. Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene[J]. RSC Advances, 10, 2267-2276(2020).

    [4] Dong S J, Yi C F, Li H. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation[J]. The International Journal of Biochemistry & Cell Biology, 69, 196-203(2015).

    [5] Elbakush A E, Güven D. Evaluation of ethanol tolerance in relation to intracellular storage compounds of Saccharomyces cerevisiae using FT-IR spectroscopy[J]. Process Biochemistry, 101, 266-273(2021).

    [6] Li R Y, Miao Y J, Yuan S K et al. Integrated transcriptomic and proteomic analysis of the ethanol stress response in Saccharomyces cerevisiae Sc131[J]. Journal of Proteomics, 203, 103377(2019).

    [7] Wang Y F, Zhang S X, Liu H Q et al. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol[J]. Journal of Basic Microbiology, 55, 1417-1426(2015).

    [8] Kim S, Kim J, Song J H et al. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling[J]. Biotechnology Journal, 11, 1221-1229(2016).

    [9] Crutchfield C A, Lu W Y, Melamud E et al. Mass spectrometry-based metabolomics of yeast[M]. Methods in enzymology, 393-426(2010).

    [10] Farrés M, Piña B, Tauler R. Chemometric evaluation of Saccharomyces cerevisiae metabolic profiles using LC-MS[J]. Metabolomics: Official Journal of the Metabolomic Society, 11, 210-224(2015).

    [11] Ming M, Wang X Y, Lian L L et al. Metabolic responses of Saccharomyces cerevisiae to ethanol stress using gas chromatography-mass spectrometry[J]. Molecular Omics, 15, 216-221(2019).

    [12] Carlquist M, Fernandes R L, Helmark S et al. Physiological heterogeneities in microbial populations and implications for physical stress tolerance[J]. Microbial Cell Factories, 11, 94(2012).

    [13] Lau W Y, Chun K H, Chan W T. Correlation of single-cell ICP-MS intensity distributions for the study of heterogeneous cellular responses to environmental stresses[J]. Journal of Analytical Atomic Spectrometry, 32, 807-815(2017).

    [14] He Y H, Wang X X, Ma B et al. Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution[J]. Biotechnology Advances, 37, 107388(2019).

    [15] Qiu S F, Li M M, Liu J et al. Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy[J]. Biomedical Optics Express, 11, 1819-1833(2020).

    [16] Iwasaki K, Kaneko A, Tanaka Y et al. Visualizing wax ester fermentation in single Euglena gracilis cells by Raman microspectroscopy and multivariate curve resolution analysis[J]. Biotechnology for Biofuels, 12, 128(2019).

    [17] Wang Q, Zeng W D, Xia Z P et al. Recognition of food-borne pathogenic bacteria by Raman spectroscopy based on random forest algorithm[J]. Chinese Journal of Lasers, 48, 0311002(2021).

    [18] Tanniche I, Collakova E, Denbow C et al. Characterizing metabolic stress-induced phenotypes of synechocystis PCC6803 with Raman spectroscopy[J]. PeerJ, 8, e8535(2020).

    [19] Li Y X, Hu C Q, Ma L F et al. Research progress in intelligent and precise optical diagnosis and treatment technology[J]. Chinese Journal of Lasers, 48, 1507002(2021).

    [20] Chen Y, Wang Z Q, Huang Y et al. Label-free detection of hydrogen peroxide-induced oxidative stress in human retinal pigment epithelium cells via laser tweezers Raman spectroscopy[J]. Biomedical Optics Express, 10, 500-513(2019).

    [21] Lin D, Zheng Z C, Wang Q W et al. Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing[J]. Optics Express, 24, 24750-24759(2016).

    [22] Navas-Moreno M, Chan J W. Laser tweezers Raman microspectroscopy of single cells and biological particles[J]. Methods in Molecular Biology, 1745, 219-257(2018).

    [23] Georg Schulze H, Konorov S O, Piret J M et al. Empirical factors affecting the quality of non-negative matrix factorization of mammalian cell Raman spectra[J]. Applied Spectroscopy, 71, 2681-2691(2017).

    [24] Horii S, Ando M, Samuel A Z et al. Detection of penicillin G produced by penicillium chrysogenum with Raman microspectroscopy and multivariate curve resolution-alternating least-squares methods[J]. Journal of Natural Products, 83, 3223-3229(2020).

    [25] Noothalapati H, Iwasaki K, Yamamoto T. Biological and medical applications of multivariate curve resolution assisted Raman spectroscopy[J]. Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry, 33, 15-22(2017).

    [26] Ji M Q, Zhu Q B, Huang M et al. Method for improving identification accuracy of components in mixtures using Raman spectra of known mixtures[J]. Chinese Journal of Lasers, 47, 1111001(2020).

    [27] Ferreira G R, Soares F L F, Carneiro R L et al. Evaluation of conversion during the synthesis of aluminum (III) methacrylate-based copolymers using Raman spectroscopy and multivariate curve resolution[J]. Microchemical Journal, 123, 62-69(2015).

    [28] López-Pastor M, Domínguez-Vidal A, Ayora-Cañada M J et al. Enzyme kinetics assay in ionic liquid-based reaction media by means of Raman spectroscopy and multivariate curve resolution[J]. Microchemical Journal, 87, 93-98(2007).

    [29] Parastar H. Multivariate curve resolution methods for qualitative and quantitative analysis in analytical chemistry[J]. Data Handling in Science and Technology, 29, 293-345(2015).

    [30] Soares F L F, Carneiro R L. In-line monitoring of cocrystallization process and quantification of carbamazepine-nicotinamide cocrystal using Raman spectroscopy and chemometric tools[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 180, 1-8(2017).

    [31] Wu H L, Yin X L, Gu H W et al. Chemometrics in bioanalytical chemistry[M]. Encyclopedia of analytical chemistry, 1-38(2016).

    [32] Roger J M, Boulet J C, Zeaiter M et al. Pre-processing methods[M]. Comprehensive chemometrics, 1-75(2020).

    [33] Jaumot J, Gargallo R, de Juan A N et al. A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB[J]. Chemometrics and Intelligent Laboratory Systems, 76, 101-110(2005).

    [34] Ruckebusch C, Blanchet L. Multivariate curve resolution: a review of advanced and tailored applications and challenges[J]. Analytica Chimica Acta, 765, 28-36(2013).

    [35] Maeder M, de Juan A. Two-way data analysis: evolving factor analysis[M]. Comprehensive chemometrics, 95-106(2020).

    [36] Jaumot J, de Juan A N, Tauler R. MCR-ALS GUI 2.0: new features and applications[J]. Chemometrics and Intelligent Laboratory Systems, 140, 1-12(2015).

    [37] Martí-Aluja I, Ruisánchez I, Larrechi M S. Quantitative analysis of the effect of zidovudine, efavirenz, and ritonavir on insulin aggregation by multivariate curve resolution alternating least squares of infrared spectra[J]. Analytica Chimica Acta, 760, 16-24(2013).

    [38] Hekmatara M, Heidari Baladehi M, Ji Y T et al. D2O-probed Raman microspectroscopy distinguishes the metabolic dynamics of macromolecules in organellar anticancer drug response[J]. Analytical Chemistry, 93, 2125-2134(2021).

    [39] Huang Y S, Nakatsuka T, Hamaguchi H O. Behaviors of the “Raman spectroscopic signature of life” in single living fission yeast cells under different nutrient, stress, and atmospheric conditions[J]. Applied Spectroscopy, 61, 1290-1294(2007).

    [40] Matsuda A, Sakaguchi N, Shigeto S. Can cells maintain their bioactivity in ionic liquids? A novel single-cell assessment by Raman microspectroscopy[J]. Journal of Raman Spectroscopy, 50, 768-777(2019).

    [41] Czamara K, Majzner K, Pacia M Z et al. Raman spectroscopy of lipids: a review[J]. Journal of Raman Spectroscopy, 46, 4-20(2015).

    [42] Wang T T, Ji Y T, Wang Y et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy[J]. Biotechnology for Biofuels, 7, 58(2014).

    [43] Huang C K, Ando M, Hamaguchi H O et al. Disentangling dynamic changes of multiple cellular components during the yeast cell cycle by in vivo multivariate Raman imaging[J]. Analytical Chemistry, 84, 5661-5668(2012).

    [44] Noothalapati H, Sasaki T, Kaino T et al. Label-free chemical imaging of fungal spore walls by Raman microscopy and multivariate curve resolution analysis[J]. Scientific Reports, 6, 27789(2016).

    [45] Talari A C S, Movasaghi Z, Rehman S et al. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 50, 46-111(2015).

    [46] Shipp D W, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences[J]. Advances in Optics and Photonics, 9, 315(2017).

    [47] Deng X C, Ali-Adeeb R, Andrews J L et al. Monitor ionizing radiation-induced cellular responses with Raman spectroscopy, non-negative matrix factorization, and non-negative least squares[J]. Applied Spectroscopy, 74, 701-711(2020).

    [48] Lairón-Peris M, Routledge S J, Linney J A et al. Lipid composition analysis reveals mechanisms of ethanol tolerance in the model yeast Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 87, e0044021(2021).

    [49] Puig-Castellví F, Bedia C, Alfonso I et al. Deciphering the underlying metabolomic and lipidomic patterns linked to thermal acclimation in Saccharomyces cerevisiae[J]. Journal of Proteome Research, 17, 2034-2044(2018).

    Tools

    Get Citation

    Copy Citation Text

    Haisheng Ou, Pengfei Zhang, Xiaochun Wang, Ying Chen, Junxian Liu, Guiwen Wang. Insights into Cellular Metabolic Differences among Yeast Strains in Ethanol Fermentation by Raman Spectroscopy and Multivariate Curve Resolution Algorithm[J]. Chinese Journal of Lasers, 2022, 49(15): 1507406

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Bio-Optical Sensing and Manipulation

    Received: Feb. 9, 2022

    Accepted: Mar. 30, 2022

    Published Online: Aug. 5, 2022

    The Author Email: Liu Junxian (jxliu@mail.gxun.edu.cn), Wang Guiwen (wguiwen@gxas.cn)

    DOI:10.3788/CJL202249.1507406

    Topics