Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2415004(2021)

Point Cloud Registration Based on Multi-Scale Feature and Point Distance Constraint

Xuchun Zhang1, Hongjun Zhou2, Jinjin Zheng1、*, and Yi Jin1、**
Author Affiliations
  • 1Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230027, China
  • show less
    Figures & Tables(11)
    Principle of the SPFH
    Neighbor scale of center point p
    Matching principle of key points
    Point cloud registration result of our algorithm. (a) Original point cloud; (b) key points; (c) matching points and corresponding relations; (d) results of registration
    Fragment of the Bunny point cloud model. (a) bun000 and bun045; (b) bun090 and bun045
    Registration result of the Bunny point cloud. (a) bun000 and bun045; (b) bun090 and bun045
    Experimental results of office point cloud registration. (a) Original point cloud; (b) 4PCS; (c) Super-4PCS; (d) our algorithm
    • Table 1. Size of partial segments of point cloud models in The Stanford 3D Scanning Repository dataset

      View table

      Table 1. Size of partial segments of point cloud models in The Stanford 3D Scanning Repository dataset

      Serial numberPoint cloud modelSegments of modelNumber of points
      1Bunnybun00040256
      bun04540097
      2ArmadilloarmadilloSide_6023404
      armadilloSide_4520647
      3BuddhahappySideRight_33668890
      happySideRight_31257499
      4DragondragonStandRight_33643467
      dragonStandRight_28824573
    • Table 2. Size of partial point cloud segments of Bunny model

      View table

      Table 2. Size of partial point cloud segments of Bunny model

      Point cloud modelSegments of modelNumber of points
      Bunnybun00040256
      bun04540097
      bun09030379
    • Table 3. Registration results of different algorithms unit: mm

      View table

      Table 3. Registration results of different algorithms unit: mm

      Serial numberAlgorithmRoot mean square distance error
      bun000 and bun045bun045 and bun090
      1ICP0.0009000.017943
      24PCS0.0048020.010270
      3Super-4PCS0.0038030.010086
      4GICP0.0012290.010159
      5Ours-CR0.0009840.007196
      6Ours-FR0.0008960.006465
    • Table 4. Experimental results of registration algorithm for the point cloud of office environment

      View table

      Table 4. Experimental results of registration algorithm for the point cloud of office environment

      Serial numberAlgorithmRoot mean square distance error /mm
      14PCS0.139283
      2Super-4PCS0.135356
      3ours0.094396
    Tools

    Get Citation

    Copy Citation Text

    Xuchun Zhang, Hongjun Zhou, Jinjin Zheng, Yi Jin. Point Cloud Registration Based on Multi-Scale Feature and Point Distance Constraint[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2415004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 3, 2021

    Accepted: Mar. 3, 2021

    Published Online: Nov. 29, 2021

    The Author Email: Zheng Jinjin (jjzheng@ustc.edu.cn), Jin Yi (jinyi08@ustc.edu.cn)

    DOI:10.3788/LOP202158.2415004

    Topics