Journal of Electronic Science and Technology, Volume. 22, Issue 1, 100244(2024)

Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction

Jia-Jun Zhong1, Yong Ma1, Xin-Zheng Niu1、*, Philippe Fournier-Viger2, Bing Wang3, and Zu-kuan Wei1
Author Affiliations
  • 1School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • 2College of Computer Science & Software Engineering, Shenzhen University, Shenzhen, 518060, China
  • 3School of Computer Science, Southwest Petroleum University, Chengdu, 610500, China
  • show less
    References(33)

    [1] [1] J.W. Jiang, C.K. Han, W.X. Zhao, J.Y. Wang, PDFmer: Propagation delayaware dynamic longrange transfmer f traffic flow prediction, in: Proc. of 37th AAAI Conf. on Artificial Intelligence, Washington, 2023, pp. 4365–4373.

    [2] Guo S.-N., Lin Y.-F., Wan H.-Y., Li X.-C., Cong G.. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE T. Knowl. Data En., 34, 5415-5428(2021).

    [3] Zhu J.-W., Han X., Deng H.-H. et al. KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting. IEEE T. Intell. Transp., 23, 15055-15065(2020).

    [4] [4] M.Z. Li, Z.X. Zhu, Spatialtempal fusion graph neural wks f traffic flow fecasting, in: Proc. of 35th AAAI Conf. on Artificial Intelligence, Online, 2021, pp. 4189–4196.

    [6] [6] J.C. Ye, L.L. Sun, B.W. Du, Y.J. Fu, H. Xiong, Coupled layerwise graph convolution f transptation dem prediction, in: Proc. of 35th AAAI Conf. on Artificial Intelligence, Online, 2021, pp. 4617–4625.

    [7] [7] B. Pu, J.S. Liu, Y. Kang, J.G. Chen, P.S. Yu, MVSTT: A multiview spatialtempal transfmer wk f trafficflow fecasting, IEEE T. Cyberics 54 (3) (Mar. 2024) 1582–1595.

    [8] [8] C. Song, Y.F. Lin, S.N. Guo, H.Y. Wan, Spatialtempal synchronous graph convolutional wks: A new framewk f spatialtempal wk data fecasting, in: Proc. of 34th AAAI Conf. on Artificial Intelligence, New Yk, 2020, pp. 914–921.

    [9] [9] M.X. Xu, W.R. Dai, C.M. Liu, et al., Spatialtempal transfmer wks f traffic flow fecasting [Online]. Available, https:arxiv.gabs2001.02908, March 2021.

    [10] [10] X.Y. Wang, Y. Ma, Y.Q. Wang, et al., Traffic flow prediction via spatial tempal graph neural wk, in: Proc. of Web Conf. 2020, Taipei China, 2020, pp. 1082–1092.

    [12] Zheng L., Zhou C., Wu J., Jiang H., Cui S.-Y.. Integrating granger causality and vector auto-regression for traffic prediction of large-scale WLANs. KSII T. Internet Inf., 10, 136-151(2016).

    [14] [14] H.V. Lint, C.V. Hinsbergen, Shtterm traffic travel time prediction models, Transptation Research Circular EC168 (Oct. 2012) 22–41.

    [15] [15] J.B. Zhang, Y. Zheng, D.K. Qi, Deep spatiotempal residual wks f citywide crowd flows prediction, in: Proc. of 31st AAAI Conf. on Artificial Intelligence, San Francisco, 2017, pp. 1655–1661.

    [16] [16] H.X. Yao, F. Wu, J.T. Ke, et al., Deep multiview spatialtempal wk f taxi dem prediction, in: Proc. of 32th AAAI Conf. on Artificial Intelligence, New leans, 2018, pp. 316:1–8.

    [19] [19] Y.G. Li, ,R. Yu, S. Cyrus ,Y. Liu. Diffusion convolutional recurrent neural wk: Datadriven traffic fecasting. [Online]. Available, https:arxiv.gabs1707.01926, February 2018.

    [20] [20] B. Yu, H.T. Yin, Z.X. Zhu, Spatiotempal graph convolutional wks: A deep learning framewk f traffic fecasting, in: Proc. of 27th Intl. Joint Conf. on Artificial Intelligence, Stockholm, 2018, pp. 3634–3640.

    [21] [21] S.N. Guo, Y.F. Lin, N. Feng, C. Song, H.Y. Wan, Attention based spatialtempal graph convolutional wks f traffic flow fecasting, in: Proc. of 33rd AAAI Conf. on Artificial Intelligence, Honolulu, 2019, pp. 114:1–8.

    [22] [22] Z.H. Lin, M.M. Li, Z.B. Zheng, Y.Y. Cheng, C. Yuan, Selfattention ConvLSTM f spatiotempal prediction, in: Proc. of 34th AAAI Conf. on Artificial Intelligence, 32nd Innovative Applications of Artificial Intelligence Conf., 10th AAAI Symp. on Educational Advances in Artificial Intelligence, New Yk, 2020, pp. 11531–11538.

    [24] [24] A. Vaswani, N.M. Shazeer, N. Parmar, et al., Attention is all you need, in: Proc. of 31st Int. Conf. on Neural Infmation Processing Systems, Long Beach, 2017, pp. 6000–6010.

    [25] [25] L. Cai, K. Janowicz, G.C. Mai, B. Yan, R. Zhu, Traffic transfmer: Capturing the continuity periodicity of time series f traffic fecasting, Transactions in GIS 24(3) (Jun. 2020) 736–755.

    [26] [26] G.Y. Jin, Z.X. Xi, H.Y. Sha, Y.H. Feng, J.C. Huang, Deep multiview graphbased wk f citywide ridehailing dem prediction, Neurocomputing 510 (Oct. 2022) 79–94.

    [27] [27] Y. Li, J.M.F. Moura. Fecaster: A graph transfmer f fecasting spatial timedependent data [Online]. Available, https:arxiv.gabs1909.04019, February 2020.

    [28] [28] M. Belkin, P. Niyogi, Laplacian eigenmaps spectral techniques f embedding clustering, in: Proc. of 14th Intl. Conf. on Neural Infmation Processing Systems: Natural Synthetic, Vancouver, 2001, pp. 585–591.

    [29] [29] D.J. Berndt, J. Cliffd, Using dynamic time warping to find patterns in time series, in: Proc. of 3rd Int. Conf. on Knowledge Discovery Data Mining, Seattle, 1994, pp. 359–370.

    [31] [31] J.Y. Wang, J.W. Jiang, W.J. Jiang, C. Li, W.X. Zhao, LibCity: An open library f traffic prediction, in: Proc. of 29th Intl. Conf. on Advances in Geographic Infmation Systems, Beijing, 2021, pp. 145–148.

    [33] [33] Z.H. Wu, S.R. Pan, G.D. Long, J. Jiang, Graph Wave f deep spatialtempal graph modeling, in: Proc. of 28th Int. Joint Conf. on Artificial Intelligence, Macao China, 2019, pp. 1907–1913.

    Tools

    Get Citation

    Copy Citation Text

    Jia-Jun Zhong, Yong Ma, Xin-Zheng Niu, Philippe Fournier-Viger, Bing Wang, Zu-kuan Wei. Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100244

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 7, 2023

    Accepted: Mar. 6, 2024

    Published Online: Jul. 5, 2024

    The Author Email: Xin-Zheng Niu (xinzhengniu@uestc.edu.cn)

    DOI:10.1016/j.jnlest.2024.100244

    Topics