Journal of Electronic Science and Technology, Volume. 22, Issue 1, 100244(2024)
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
Fig. 1. Structure of the proposed traffic flow prediction model with multi-head attention: (a) data embedding layer, (b) spatiotemporal encoder, and (c) spatiotemporal decoder.
Fig. 5. Results of the ablation experiments: (a) MAE on PeMSD4, (b) MAPE on PeMSD4, (c) RMSE on PeMSD4, (d) MAE on PeMSD8, (e) MAPE on PeMSD8, (f) RMSE on PeMSD8, (g) MAE on NYCTaxi, (h) MAPE on NYCTaxi, (i) RMSE on NYCTaxi, (j) MAE on CHIBike, (k) MAPE on CHIBike, and (l) RMSE on CHIBike.
Fig. 6. Loss curves of the ablation experiments or (a) PeMSD4, (b) PeMSD8, (c) NYCTaxi, and (d) CHIBike.
|
|
|
|
Get Citation
Copy Citation Text
Jia-Jun Zhong, Yong Ma, Xin-Zheng Niu, Philippe Fournier-Viger, Bing Wang, Zu-kuan Wei. Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100244
Category:
Received: Nov. 7, 2023
Accepted: Mar. 6, 2024
Published Online: Jul. 5, 2024
The Author Email: Xin-Zheng Niu (xinzhengniu@uestc.edu.cn)