Journal of Electronic Science and Technology, Volume. 22, Issue 1, 100244(2024)

Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction

Jia-Jun Zhong1, Yong Ma1, Xin-Zheng Niu1、*, Philippe Fournier-Viger2, Bing Wang3, and Zu-kuan Wei1
Author Affiliations
  • 1School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • 2College of Computer Science & Software Engineering, Shenzhen University, Shenzhen, 518060, China
  • 3School of Computer Science, Southwest Petroleum University, Chengdu, 610500, China
  • show less
    Figures & Tables(10)
    Structure of the proposed traffic flow prediction model with multi-head attention: (a) data embedding layer, (b) spatiotemporal encoder, and (c) spatiotemporal decoder.
    Data embedding layer.
    Spatiotemporal encoder.
    Spatiotemporal decoder.
    Results of the ablation experiments: (a) MAE on PeMSD4, (b) MAPE on PeMSD4, (c) RMSE on PeMSD4, (d) MAE on PeMSD8, (e) MAPE on PeMSD8, (f) RMSE on PeMSD8, (g) MAE on NYCTaxi, (h) MAPE on NYCTaxi, (i) RMSE on NYCTaxi, (j) MAE on CHIBike, (k) MAPE on CHIBike, and (l) RMSE on CHIBike.
    Loss curves of the ablation experiments or (a) PeMSD4, (b) PeMSD8, (c) NYCTaxi, and (d) CHIBike.
    • Table 1. Datasets information.

      View table
      View in Article

      Table 1. Datasets information.

      DatasetNodesEdgesTime stepsTime intervalTime range
      PeMSD4307340169925 min01/01/2018−02/28/2018
      PeMSD8170295178565 min07/01/2016−08/31/2016
      NYCTaxi754841752030 min01/01/2014−12/31/2014
      CHIBike2701966441630 min07/01/2020−09/30/2020
    • Table 2. Experimental results on the PeMSD4 and PeMSD8 graph datasets.

      View table
      View in Article

      Table 2. Experimental results on the PeMSD4 and PeMSD8 graph datasets.

      ModelLSTMDCRNNSTGCNASTGCNGraph WaveNetASTGNNPDFormerMSPSTTMSPSTT_nde
      DatasetIndex
      *Bold is for the best result, and underline is for the second best.
      PeMSD4MAE26.8423.6722.3122.4819.3519.2818.7518.7718.45
      RMSE40.7637.1235.0534.8131.7431.2730.2630.2930.04
      MAPE (%)22.3916.1214.4315.8913.3213.1613.0012.5012.34
      PeMSD8MAE22.1918.2518.0918.9215.0715.9614.7514.1614.13
      RMSE33.6328.3227.9828.5623.8524.9224.1823.6623.49
      MAPE (%)18.7711.5911.2312.589.5110.889.509.539.30
    • Table 3. Experimental results on the grid datasets.

      View table
      View in Article

      Table 3. Experimental results on the grid datasets.

      ModelPDFormerMSPSTTMSPSTT_nde
      DatasetIndex
      *Bold is for the best result, and underline is for the second best.
      NYCTaxiMAE13.4712.9913.26
      MAPE (%)26.0323.5723.90
      RMSE25.3324.5525.44
      CHIBikeMAE2.452.422.33
      MAPE (%)54.7253.8251.93
      RMSE4.264.214.05
    • Table 4. Training time of three methods (s/epoch).

      View table
      View in Article

      Table 4. Training time of three methods (s/epoch).

      DatasetPDFormerMSPSTTMSPSTT_nde
      PeMSD4313.832754.372535.21
      PeMSD8256.362272.162144.90
      NYCTaxi81.70379.371770.47
      CHIBike35.87171.80165.75
    Tools

    Get Citation

    Copy Citation Text

    Jia-Jun Zhong, Yong Ma, Xin-Zheng Niu, Philippe Fournier-Viger, Bing Wang, Zu-kuan Wei. Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100244

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 7, 2023

    Accepted: Mar. 6, 2024

    Published Online: Jul. 5, 2024

    The Author Email: Xin-Zheng Niu (xinzhengniu@uestc.edu.cn)

    DOI:10.1016/j.jnlest.2024.100244

    Topics