Chinese Journal of Lasers, Volume. 49, Issue 22, 2202001(2022)

Optimization of Laser Cleaning Process Parameters for Petroleum Pipe Threads Based on Response Surface Method and Particle Swarm Algorithm

Xingwei Sun1,2, Zhong Zhang1,2, Heran Yang1,2、*, Zhixu Dong1,2, and Yin Liu1,2
Author Affiliations
  • 1School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, Liaoning, China
  • 2Key Laboratory of Numerical Control Manufacturing Technology for Complex Surfaces of Liaoning Province, Shenyang 110870, Liaoning, China
  • show less
    Figures & Tables(24)
    Laser cleaning platform. (a) Principle diagram of laser cleaning; (b) experimental equipment for laser cleaning; (c) scanning electron microscope; (d) confocal laser microscope; (e) ultra-depth-of-field microscope; (f) laser cleaning test bench for pipe thread
    Surface morphologies of rust layer. (a) Macro-morphology of petroleum pipe thread; (b) micro-morphology of peeling layer easy to fall off in rust layer; (c) micro-morphology of dense layer; (d) element content distribution of rust layer
    Thread surface after laser cleaning. (a) Overall morphology; (b) local amplification at A′
    Sample after wire cutting
    Micro-morphologies under different laser powers. (a) 600 W; (b) 550 W; (c) 500 W; (d) 450 W; (e) 400 W
    Surface roughnesses under different laser powers
    Contents of oxygen elements under different laser powers
    Micro-morphologies under different defocusing amounts. (a) +4 mm; (b) +3 mm; (c) +2 mm; (d) +1 mm; (e) 0 mm
    Surface roughnesses under different defocusing amounts
    Contents of oxygen elements under different defocusing amounts
    Micro-morphologies under different scanning speeds. (a) 3000 mm/s; (b) 2500 mm/s; (c) 2000 mm/s; (d) 1500 mm/s; (e) 1000 mm/s
    Surface roughnesses under different scanning speeds
    Contents of oxygen elements under different scanning speeds
    Residual plot of mathematical model
    Flow chart of improved particle swarm algorithm
    Convergence curves of two algorithms
    Contents of elements after cleaning under optimized process parameters
    Molten pool morphology after cleaning under optimized process parameters
    • Table 1. Main parameters of pulsed lasers

      View table

      Table 1. Main parameters of pulsed lasers

      ParameterValue
      Wavelength /nm1064
      Laser power /W≤1000
      Pulse width /ns100
      Frequency /kHz≤100
      Scanning speed /(mm·s-1)≤3000
      Spot diameter /mm0.05
    • Table 2. Orthogonal test level and parameters

      View table

      Table 2. Orthogonal test level and parameters

      LevelLaser power /WScanning speed /(mm·s-1)Defocusing amount /mm
      Level 14003000+4
      Level 24502500+3
      Level 35002000+2
      Level 45501500+1
      Level 560010000
    • Table 3. Experimental data

      View table

      Table 3. Experimental data

      Experiment No.Laser power /WScanning speed /(mm·s-1)Defocusing amount /mmSurface roughness /μm
      16003000+49.13
      26002500+38.84
      36002000+28.23
      46001500+19.27
      56001000011.82
      65503000+38.21
      75502500+27.62
      85502000+18.13
      9550150008.44
      105501000+47.42
      115003000+26.53
      125002500+17.14
      13500200007.37
      145001500+48.83
      155001000+35.44
      164503000+18.25
      17450250007.67
      184502000+47.39
      194501500+36.64
      204501000+26.92
      214003000+17.81
      224002500+48.27
      234002000+37.23
      244001500+26.44
      254001000010.41
    • Table 4. Range analysis table

      View table

      Table 4. Range analysis table

      LevelLaser powerScanning speedDefocusing amount
      Level 19.4587.9868.208
      Level 27.9647.9087.388
      Level 37.0627.6707.148
      Level 47.3747.9248.120
      Level 58.0328.4029.142
      Range2.3960.7321.994
    • Table 5. Experimental design matrix

      View table

      Table 5. Experimental design matrix

      Experiment No.Laser parameterSurface roughness /μm
      Laser power /WDefocusing amount /mmScanning speed /(mm·s-1)
      1500220005.77
      2450215006.26
      3500220006.36
      4450320005.14
      5500220005.82
      6500220005.44
      7450225005.61
      8500115006.14
      9550215006.38
      10500125007.14
      11500325005.25
      12550225007.62
      13500315004.85
      14450120006.75
      15550120008.13
      16500220005.74
      17550320006.65
    • Table 6. Analysis of model variance

      View table

      Table 6. Analysis of model variance

      SourceSum of squaresDegree of freedomMean squareF valueP valueReliability
      Model11.9091.3215.430.0008Significant
      A3.1513.1536.750.0005 
      B4.9114.9127.340.0001 
      C0.5010.505.780.0472 
      AB4.225×10-314.225×10-30.0490.8306 
      AC0.8910.8910.420.0145 
      BC0.0910.091.050.3396 
      A22.2612.2626.320.0014 
      B20.0510.050.590.4679 
      C20.03410.0340.400.5460 
      Residual0.6070.086   
      Lack of fit value0.1630.0520.470.7347Not significant
      Pure error0.4440.11   
      Total12.5016    
      RPRED2=0.7458RADJ2=0.8903   
      R=13.734   
    Tools

    Get Citation

    Copy Citation Text

    Xingwei Sun, Zhong Zhang, Heran Yang, Zhixu Dong, Yin Liu. Optimization of Laser Cleaning Process Parameters for Petroleum Pipe Threads Based on Response Surface Method and Particle Swarm Algorithm[J]. Chinese Journal of Lasers, 2022, 49(22): 2202001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Dec. 10, 2021

    Accepted: Jan. 20, 2022

    Published Online: Nov. 9, 2022

    The Author Email: Yang Heran (yangheran@sut.edu.cn)

    DOI:10.3788/CJL202249.2202001

    Topics