Chinese Journal of Lasers, Volume. 48, Issue 2, 0202005(2021)

Principle and Method of Ultrafast Laser Beam Shaping and Its Application in Functional Microstructure Fabrication

Kaiwen Ding, Cong Wang*, Zhi Luo, Huiyong Liang, and Ji’an Duan
Author Affiliations
  • State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China
  • show less
    References(85)

    [1] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [2] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking[J]. Applied Physics Letters, 38, 671-672(1981).

    [3] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [4] Ma Z C, Zhang Y L, Han B et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications[J]. Small Methods, 2, 1700413(2018).

    [6] van de Meugheuvel P, Koopmans B et al. Deterministic all-optical magnetization writing facilitated by non-local transfer of spin angular momentum[J]. Nature Communications, 11, 3835(2020).

    [7] Chung S H, Mazur E. Surgical applications of femtosecond lasers[J]. Journal of Biophotonics, 2, 557-572(2009).

    [8] Yamakawa K. Barty C P J. Ultrafast, ultrahigh-peak, and high-average power Ti: sapphire laser system and its applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 658-675(2000).

    [9] Wang C, Man S, Luo Z et al. Low-temperature copper bonding strategy via hierarchical microscale taper array fabricated by femtosecond laser[J]. Laser Physics Letters, 17, 036002(2020).

    [11] Zhang F, Wang C, Yin K et al. Underwater giant enhancement of broadband diffraction efficiency of surface diffraction gratings fabricated by femtosecond laser[J]. Journal of Applied Physics, 121, 243102(2017).

    [12] Loesel F H, Fischer J P, Götz M H et al. Non-thermal ablation of neural tissue with femtosecond laser pulses[J]. Applied Physics B, 66, 121-128(1998).

    [13] Domke M, Wick S, Laible M et al. Ultrafast dynamics of hard tissue ablation using femtosecond-lasers[J]. Journal of Biophotonics, 11, e201700373(2018).

    [15] Pan C J, Jiang L, Sun J Y et al. Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation[J]. Light: Science & Applications, 9, 80(2020).

    [16] Wang C, Tian Y X, Luo Z et al. Convex grid-patterned microstructures on silicon induced by femtosecond laser assisted with chemical etching[J]. Optics & Laser Technology, 119, 105663(2019).

    [17] Luo Z, Duan J, Guo C. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica[J]. Optics Letters, 42, 2358-2361(2017).

    [18] Li Q K, Yu Y H, Wang L et al. Sapphire-based Fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technology Letters, 28, 1290-1293(2016).

    [19] Sun X Y, Zeng L, Du H F et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings[J]. Optics & Laser Technology, 124, 105969(2020).

    [20] Streltsov A M, Borrelli N F. Study of femtosecond-laser-written waveguides in glasses[J]. Journal of the Optical Society of America B, 19, 2496-2504(2002).

    [21] González-Rubio G, Díaz-Núñez P, Rivera A et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances[J]. Science, 358, 640-644(2017).

    [23] Mao Y X, Pan Y, Li X et al. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip[J]. Lab on a Chip, 18, 2720-2729(2018).

    [24] Zhang F, Wang H R, Wang C et al. Direct femtosecond laser writing of inverted array for broadband antireflection in the far-infrared[J]. Optics and Lasers in Engineering, 129, 106062(2020).

    [25] Ding K W, Li M, Wang C et al. Sequential evolution of colored copper surface irradiated by defocused femtosecond laser[J]. Advanced Engineering Materials, 22, 1901310(2020).

    [26] Song Y X, Wang C, Dong X R et al. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser[J]. Optics & Laser Technology, 102, 25-31(2018).

    [28] Huo J L, Yong J L, Chen F et al. Trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces[J]. Advanced Materials Interfaces, 6, 1900262(2019).

    [29] Ding K W, Wang C, Zheng Y et al. One-step fabrication of multifunctional fusiform hierarchical micro/nanostructures on copper by femtosecond laser[J]. Surface and Coatings Technology, 367, 244-251(2019).

    [30] Wang N, Wang Y B, Shang B et al. Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation[J]. Journal of Colloid and Interface Science, 531, 300-310(2018).

    [32] Ahmed Y S, Paiva J M. Arif A F M, et al. The effect of laser micro-scale textured tools on the tool-chip interface performance and surface integrity during austenitic stainless-steel turning[J]. Applied Surface Science, 510, 145455(2020).

    [33] Ou G, Fan P X, Zhang H J et al. Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting[J]. Nano Energy, 35, 207-214(2017).

    [34] Stoian R, Bhuyan M K, Zhang G D et al. Ultrafast Bessel beams: advanced tools for laser materials processing[J]. Advanced Optical Technologies, 7, 165-174(2018).

    [36] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light Science & Applications, 7, 17134(2018).

    [38] Wang G B. Photonic manufacturing science & technology: overview and outlook[J]. Journal of Mechanical Engineering, 47, 157-169(2011).

    [39] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics. Physical Society (Great Britain), 76, 036502(2013).

    [40] Hernandez-Rueda J, Götte N, Siegel J et al. Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses[J]. ACS Applied Materials & Interfaces, 7, 6613-6619(2015).

    [42] Singh K P, Kenfack A, Rost J M et al. Control of molecular breakup by an infrared pulse and a femtosecond pulse train[J]. Physical Review A, 97, 033406(2018).

    [43] Bowman R, Muller N, Zambrana-Puyalto X et al. Efficient generation of Bessel beam arrays by means of an SLM[J]. The European Physical Journal Special Topics, 199, 159-166(2011).

    [44] Yang L, El-Tamer A, Hinze U et al. Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams[J]. Applied Physics Letters, 105, 041110(2014).

    [45] Ouadghiri-Idrissi I, Giust R, Froehly L et al. Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator[J]. Optics Express, 24, 11495-11504(2016).

    [46] Yang L, Qian D D, Xin C et al. Direct laser writing of complex microtubes using femtosecond vortex beams[J]. Applied Physics Letters, 110, 221103(2017).

    [47] Ni J C, Wang C W, Zhang C C et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light Science & Applications, 6, e17011(2017).

    [48] Kuang Z, Li J N, Edwardson S et al. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator[J]. Optics and Lasers in Engineering, 70, 1-5(2015).

    [49] Li J N, Tang Y, Kuang Z et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, 112, 59-67(2019).

    [50] Wippermann F, Zeitner U D, Dannberg P et al. Beam homogenizers based on chirped microlens arrays[J]. Optics Express, 15, 6218-6231(2007).

    [51] Salter P S, Booth M J. Addressable microlens array for parallel laser microfabrication[J]. Optics Letters, 36, 2302-2304(2011).

    [52] Tsai K F, Chu S C. Generating laser output with arbitrary lateral shape by using multi-point beam superposition method in digital lasers[J]. Laser Physics, 28, 075801(2018).

    [54] Luo Z, Yin K, Dong X R et al. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser[J]. Optical Materials, 78, 465-470(2018).

    [56] Xie Q, Li X W, Jiang L et al. High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam[J]. Applied Physics A, 122, 136(2016).

    [57] Cheng Y, Sugioka K, Midorikawa K et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 28, 55-57(2003).

    [58] Liu J R, Zhang Z Y, Chang S D et al. Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser[J]. Optics Communications, 253, 315-319(2005).

    [60] Ams M, Marshall G, Spence D et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses[J]. Optics Express, 13, 5676-5681(2005).

    [61] Sakakura M, Sawano T, Shimotsuma Y et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Optics Express, 18, 12136-12143(2010).

    [62] Hu Y L, Chen Y H, Ma J Q et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Applied Physics Letters, 103, 141112(2013).

    [64] Wang C, Luo Z, Duan J et al. Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser[J]. Laser Physics Letters, 12, 056001(2015).

    [66] Ionin A A, Kudryashov S I, Makarov S V et al. Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime[J]. Applied Surface Science, 284, 634-637(2013).

    [67] J J Nivas J, He S T, Song Z M et al. Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams[J]. Applied Surface Science, 418, 565-571(2017).

    [68] Weiner A M. Ultrafast optical pulse shaping: a tutorial review[J]. Optics Communications, 284, 3669-3692(2011).

    [70] Divitt S, Zhu W Q, Zhang C et al. Ultrafast optical pulse shaping using dielectric metasurfaces[J]. Science, 364, 890-894(2019).

    [71] Wang A D, Jiang L, Li X W et al. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films[J]. Optics & Laser Technology, 101, 298-303(2018).

    [75] Liu W, Jiang L, Han W N et al. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains[J]. Optics Express, 27, 9782-9793(2019).

    [76] Li X, Zhang G, Jiang L et al. Production rate enhancement of size-tunable silicon nanoparticles by temporally shaping femtosecond laser pulses in ethanol[J]. Optics Express, 23, 4226-4232(2015).

    [77] Garrelie F, Bourquard F, Loir A S et al. Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping[J]. Optics & Laser Technology, 78, 42-51(2016).

    [79] Zhu G H, van Howe J, Durst M et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 13, 2153-2159(2005).

    [81] Wang P, Chu W, Li W B et al. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses[J]. Optics Letters, 43, 3485-3488(2018).

    [82] Kammel R, Ackermann R, Thomas J et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing[J]. Light: Science & Applications, 3, e169(2014).

    [83] He F, Xu H, Cheng Y et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 35, 1106-1108(2010).

    [84] Cheng W B, Liu X L, Polynkin P. Simultaneously spatially and temporally focused femtosecond vortex beams for laser micromachining[J]. Journal of the Optical Society of America B, 35, B16-B19(2018).

    [85] Doñate-Buendía C, Fernández-Alonso M, Lancis J et al[J]. Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing Photonics Research, 2019, 1249-1257.

    Tools

    Get Citation

    Copy Citation Text

    Kaiwen Ding, Cong Wang, Zhi Luo, Huiyong Liang, Ji’an Duan. Principle and Method of Ultrafast Laser Beam Shaping and Its Application in Functional Microstructure Fabrication[J]. Chinese Journal of Lasers, 2021, 48(2): 0202005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Aug. 31, 2020

    Accepted: Oct. 27, 2020

    Published Online: Jan. 7, 2021

    The Author Email: Wang Cong (wangcong@csu.edu.cn)

    DOI:10.3788/CJL202148.0202005

    Topics