Electronics Optics & Control, Volume. 32, Issue 7, 7(2025)

Local Obstacle Avoidance Planning of UAV Combining Improved A* with Velocity Obstacle Method

FANG Zhuping1, LI Li1,2, TANG Rong1, WU Jun1, and LIU Zhigui1
Author Affiliations
  • 1Southwest University of Science and Technology,Mianyang 621000,China
  • 2Sichuan Industrial Autonomous Controllable Artificial Intelligence Engineering Technology Research Center,Mianyang 621000,China
  • show less
    References(13)

    [1] [1] HUANG S N,TEO R,TAN K,et al. Collision avoidance of multi unmanned aerial vehicles: a review[J]. Annual Reviews in Control,2019,48: 147-164.

    [2] [2] DHULKEFL E J,DURDU A,TERIOGLU H. Dijkstra algorithm using UAV path planning[J]. Konya Journal of Engineering Sciences,2020,8(8): 92-105.

    [3] [3] WANG X Y,LIU Z S,LIU J H. Mobile robot path planning based on an improved A* algorithm[C]//International Conference on Computer Graphics,Artificial Intelligence,and Data Processing(ICCAID2022). Guangzhou: SPIE,2023: 12604.

    [4] [4] NASH A,DANIEL K,KOENIG S,et al. Theta*: any-angle path planning on grids[J]. Journal of Artificial Intelligence Research,2007,39: 533-579.

    [5] [5] YANG F,FANG X,GAO F,et al. Obstacle avoidance path planning for UAV based on improved RRT algorithm[J]. Discrete Dynamics in Nature and Society,2022,2022: 4544499.

    [6] [6] DING J,ZHOU Y X,HUANG X,et al. An improved RRT* algorithm for robot path planning based on path expansion heuristic sampling[J]. Journal of Computational Science,2023,67: 101937.

    [7] [7] SAEED R A,OMRI M,ABDEL-KHALEK S,et al. Optimal path planning for drones based on swarm intelligence algorithm[J]. Neural Computing and Applications,2022,34: 10133-10155.

    [8] [8] SONNY A,YEDURI S R,CENKERAMADDI L R. Autonomous UAV path planning using modified PSO for UAV-assisted wireless networks[J]. IEEE Access,2023,11: 70353-70367.

    [9] [9] CUI Y J,DONG X,LI D C,et al. An end-to-end deep reinforcement learning method for UAV autonomous motion planning[C]//2022 7th International Conference on Robotics and Automation Engineering (ICRAE). Singapore: IEEE,2022: 100-104.

    [11] [11] HUANG J H,ZENG J,CHI X M,et al. Velocity obstacle for polytopic collision avoidance for distributed multi-robot systems[J]. IEEE Robotics and Automation Letters,2023,8(6):3502-3509.

    [12] [12] XU T Y,ZHOU H B,TAN S X,et al. Mechanical arm obstacle avoidance path planning based on improved artificial potential field method[J]. Industrial Robot: The International Journal of Robotics Research and Application,2021,49: 271-279.

    [13] [13] ZHOU B Y,GAO F,WANG L Q,et al. Robust and efficient quadrotor trajectory generation for fast autonomous flight[J]. IEEE Robotics and Automation Letters,2019,4(4): 3529-3536.

    [16] [16] HAN L X,GAO F,ZHOU B Y,et al. FIESTA: fast incremental Euclidean distance fields for online motion planning of aerial robots[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau: IEEE,2019: 4423-4430.

    Tools

    Get Citation

    Copy Citation Text

    FANG Zhuping, LI Li, TANG Rong, WU Jun, LIU Zhigui. Local Obstacle Avoidance Planning of UAV Combining Improved A* with Velocity Obstacle Method[J]. Electronics Optics & Control, 2025, 32(7): 7

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 3, 2024

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2025.07.002

    Topics