Chinese Journal of Lasers, Volume. 47, Issue 2, 207004(2020)
Optical Coherence Microscopy and Its Application
[1] Swanson E A, Izatt J A, Hee M R et al. In vivo retinal imaging by optical coherence tomography[J]. Optics Letters, 18, 1864-1866(1993).
[2] Wojtkowski M, Srinivasan V, Fujimoto J G et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography[J]. Ophthalmology, 112, 1734-1746(2005).
[3] Chen Z Y, Shen Y, Bao W et al. Identification of surface defects on glass by parallel spectral domain optical coherence tomography[J]. Optics Express, 23, 23634-23646(2015).
[4] Dansingani K K, Balaratnasingam C, Naysan J et al. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography[J]. Retina, 36, 499-516(2016).
[5] Bouma B E, Villiger M, Otsuka K et al. Intravascular optical coherence tomography [Invited][J]. Biomedical Optics Express, 8, 2660-2686(2017).
[6] Ang M, Baskaran M, Werkmeister R M et al. Anterior segment optical coherence tomography[J]. Progress in Retinal and Eye Research, 66, 132-156(2018).
[11] Siddiqui M, Nam A S, Tozburun S et al. High-speed optical coherence tomography by circular interferometric ranging[J]. Nature Photonics, 12, 111-116(2018).
[12] Israelsen N M, Petersen C R, Barh A et al. Real-time high-resolution mid-infrared optical coherence tomography[J]. Light: Science & Applications, 8, 11(2019).
[13] Federici A, Dubois A. Full-field optical coherence microscopy with optimized ultrahigh spatial resolution[J]. Optics Letters, 40, 5347-5350(2015).
[14] Schmitt J M, Yadlowsky M J, Bonner R F. Subsurface imaging of living skin with optical coherence microscopy[J]. Dermatology, 191, 93-98(1995).
[15] Tripathi S, Davis B J. Toussaint K C Jr, et al. Determination of the second-order nonlinear susceptibility elements of a single nanoparticle using coherent optical microscopy[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, 015401(2011).
[17] Min E, Lee J, Vavilin A et al. Wide-field optical coherence microscopy of the mouse brain slice[J]. Optics Letters, 40, 4420-4423(2015).
[18] Curatolo A, Villiger M, Lorenser D et al. Ultrahigh-resolution optical coherence elastography[J]. Optics Letters, 41, 21-24(2016).
[19] Chirskaya V, Margaryants B, Zhukova V. The study of plant tissue by optical coherent microscopy method[J]. Journal of Physics: Conference Series, 735, 012084(2016).
[21] Sandison D R, Webb W W. Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes[J]. Applied Optics, 33, 603-615(1994).
[22] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[23] Izatt J A, Hee M R, Owen G M et al. Optical coherence microscopy in scattering media[J]. Optics Letters, 19, 590-592(1994).
[24] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).
[25] Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).
[26] de Boer J F, Cense B, Park B H et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 28, 2067-2069(2003).
[27] Choma M, Sarunic M, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).
[28] Beaurepaire E, Boccara A C, Lebec M et al. Full-field optical coherence microscopy[J]. Optics Letters, 23, 244-246(1998).
[29] Dubois A, Vabre L, Boccara A C et al. High-resolution full-field optical coherence tomography with a Linnik microscope[J]. Applied Optics, 41, 805-812(2002).
[32] Laude B, de Martino A, Drévillon B et al. Full-field optical coherence tomography with thermal light[J]. Applied Optics, 41, 6637-6645(2002).
[33] Schausberger S E, Heise B, Bernstein S et al. Full-field optical coherence microscopy with Riesz transform-based demodulation for dynamic imaging[J]. Optics Letters, 37, 4937-4939(2012).
[34] Choi W J, Jeon D I, Ahn S G et al. Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution[J]. Optics Express, 18, 23285-23295(2010).
[35] Laude B, de Martino A, Drevillon B et al. Full-field optical coherence tomography with thermal light[J]. Applied Optics, 41, 6637-6645(2002).
[36] Schmitt J M, Lee S L, Yung K M. An optical coherence microscope with enhanced resolving power in thick tissue[J]. Optics Communications, 142, 203-207(1997).
[37] Aguirre A D, Hsiung P, Ko T H et al. High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging[J]. Optics Letters, 28, 2064-2066(2003).
[38] Tang T, Zhao C, Chen Z Y et al. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials[J]. Acta Physica Sinica, 64, 174201(2015).
[39] Marchand P J, Bouwens A, Szlag D et al. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography[J]. Biomedical Optics Express, 8, 3343-3359(2017).
[40] Yadlowsky M J, Schmitt J M, Bonner R F. Multiple scattering in optical coherence microscopy[J]. Applied Optics, 34, 5699-5707(1995).
[41] Yadlowsky M J, Schmitt J M, Bonner R F. Contrast and resolution in the optical-coherence microscopy of dense biological tissue[J]. Proceedings of SPIE, 2387, 193-203(1995).
[42] Desjardins A E, Vakoc B J, Tearney G J et al. Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging[J]. Optics Express, 14, 4736-4745(2006).
[43] Chen C L, Shi W S, Deorajh R et al. Beam-shifting technique for speckle reduction and flow rate measurement in optical coherence tomography[J]. Optics Letters, 43, 5921-5924(2018).
[44] Liu S Y. Lamont M R E, Mulligan J A, et al. Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle[J]. Biomedical Optics Express, 9, 4919-4935(2018).
[45] Winetraub Y, Wu C, Collins G P et al. Upper limit for angular compounding speckle reduction[J]. Applied Physics Letters, 114, 211101(2019).
[46] Karamata B, Leutenegger M, Laubscher M et al. Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography[J]. Journal of the Optical Society of America A, 22, 1380-1388(2005).
[47] Choi Y, Hosseini P, Choi W et al. Dynamic speckle illumination wide-field reflection phase microscopy[J]. Optics Letters, 39, 6062-6065(2014).
[48] Ogien J, Dubois A. High-resolution full-field optical coherence microscopy using a broadband light-emitting diode[J]. Optics Express, 24, 9922-9931(2016).
[49] Stremplewski P, Auksorius E, Wnuk P et al. In vivo volumetric imaging by crosstalk-free full-field OCT[J]. Optica, 6, 608-617(2019).
[50] Hitzenberger C K, Baumgartner A, Drexler W et al. Dispersion effects in partial coherence interferometry: implications for intraocular ranging[J]. Journal of Biomedical Optics, 4, 144-152(1999).
[51] Fercher A, Hitzenberger C, Sticker M et al. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography[J]. Optics Express, 9, 610-615(2001).
[52] Lee C Y, Yang P N, Tsai L H et al. Fourier domain optical coherence tomography and digital algorithm for dispersion compensation. [C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California, United States. Washington, D.C.: OSA, JW2A, 49(2017).
[53] Pan L H, Wang X Z, Li Z L et al. Depth-dependent dispersion compensation for full-depth OCT image[J]. Optics Express, 25, 10345-10354(2017).
[54] Oh W Y, Bouma B E, Iftimia N et al. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera[J]. Optics Express, 14, 726-735(2006).
[55] Qi B, Phillip Himmer A, Maggie Gordon L et al. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror[J]. Optics Communications, 232, 123-128(2004).
[56] Divetia A, Hsieh T H, Zhang J et al. Dynamically focused optical coherence tomography for endoscopic applications[J]. Applied Physics Letters, 86, 103902(2005).
[57] Hillmann D, Lührs C, Bonin T et al. Holoscopy: holographic optical coherence tomography[J]. Optics Letters, 36, 2390-2392(2011).
[58] Grebenyuk A A, Ryabukho V P. Numerical correction of coherence gate in full-field swept-source interference microscopy[J]. Optics Letters, 37, 2529-2531(2012).
[60] Yamanaka M, Teranishi T, Kawagoe H et al. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging[J]. Scientific Reports, 6, 31715(2016).
[61] Yamanaka M, Hayakawa N, Nishizawa N. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band[J]. Journal of Biomedical Optics, 24, 070502(2019).
[62] Ding Z H, Ren H W, Zhao Y H et al. High-resolution optical coherence tomography over a large depth range with an axicon lens[J]. Optics Letters, 27, 243-245(2002).
[63] Liu L B, Liu C, Howe W C et al. Binary-phase spatial filter for real-time swept-source optical coherence microscopy[J]. Optics Letters, 32, 2375-2377(2007).
[64] Leitgeb R A, Villiger M, Bachmann A H et al. Extended focus depth for Fourier domain optical coherence microscopy[J]. Optics Letters, 31, 2450-2452(2006).
[65] Villiger M, Pache C, Lasser T. Dark-field optical coherence microscopy[J]. Optics Letters, 35, 3489-3491(2010).
[67] Auksorius E, Claude Boccara A. Dark-field full-field optical coherence tomography[J]. Optics Letters, 40, 3272-3275(2015).
[68] Berclaz C, Goulley J, Villiger M et al. Diabetes imaging: quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy[J]. Biomedical Optics Express, 3, 1365-1380(2012).
[69] Rolland J P, Meemon P, Murali S et al. Gabor domain optical coherence microscopy[J]. Proceedings of SPIE, 7556, 75560A(2010).
[70] Rolland J P, Meemon P, Murali S et al. Gabor-based fusion technique for optical coherence microscopy[J]. Optics Express, 18, 3632-3642(2010).
[71] Canavesi C, Rolland J P. Ten years of Gabor-domain optical coherence microscopy[J]. Applied Sciences, 9, 2565(2019).
[72] Cogliati A, Canavesi C, Hayes A et al. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy[J]. Optics Express, 24, 13365-13374(2016).
[73] An L, Li P, Shen T T et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second[J]. Biomedical Optics Express, 2, 2770-2783(2011).
[74] Jayaraman V, Jiang J, Li H et al. OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range. [C]∥CLEO: 2011-Laser Applications to Photonic Applications, May 1-6, 2011, Baltimore, Maryland, United States. Washington, D.C.: OSA, PDPB2(2011).
[75] Choi W, Potsaid B, Jayaraman V et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source[J]. Optics Letters, 38, 338-340(2013).
[76] Grulkowski I, Liu J J, Potsaid B et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source[J]. Optics Letters, 38, 673-675(2013).
[77] Bonin T, Franke G, Hagen-Eggert M et al. In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s[J]. Optics Letters, 35, 3432-3434(2010).
[78] Zhang K, Kang J U. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT[J]. Optics Express, 18, 23472-23487(2010).
[79] Rasakanthan J, Sugden K, Tomlins P H. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit[J]. Journal of Biomedical Optics, 16, 020505(2011).
[80] Jian Y F, Wong K, Sarunic M V. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering[J]. Journal of Biomedical Optics, 18, 026002(2013).
[84] Rivet S, Maria M, Bradu A et al. Complex master slave interferometry[J]. Optics Express, 24, 2885-2904(2016).
[85] Bradu A, Israelsen N M, Maria M et al. Recovering distance information in spectral domain interferometry[J]. Scientific Reports, 8, 15445(2018).
[86] Zhang X, Huo T C, Wang C M et al. Optical computing for optical coherence tomography[J]. Scientific Reports, 6, 37286(2016).
[87] Zhang W X, Zhang X, Wang C M et al. Optical computing optical coherence tomography with conjugate suppression by dispersion[J]. Optics Letters, 44, 2077-2080(2019).
[88] Ferrand A, Schleicher K D, Ehrenfeuchter N et al. Using the NoiSee workflow to measure signal-to-noise ratios of confocal microscopes[J]. Scientific Reports, 9, 1165(2019).
[89] Wang D P, Xia J. Optics based biomedical imaging: principles and applications[J]. Journal of Applied Physics, 125, 191101(2019).
[90] Thouvenin O, Grieve K, Xiao P et al. En face coherence microscopy [Invited][J]. Biomedical Optics Express, 8, 622-639(2017).
[91] Tankam P, He Z G, Chu Y J et al. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases[J]. Optics Letters, 40, 1113-1116(2015).
[92] Tamborski S, Lyu H C, Dolezyczek H et al. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain[J]. Biomedical Optics Express, 7, 4400-4414(2016).
[93] Baumann B, Woehrer A, Ricken G et al. Visualization of neuritic plaques in Alzheimer's disease by polarization-sensitive optical coherence microscopy[J]. Scientific Reports, 7, 43477(2017).
[94] Lichtenegger A, Harper D J, Augustin M et al. Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer's disease brain samples[J]. Biomedical Optics Express, 8, 4007-4025(2017).
[95] Wang H, Akkin T, Magnain C et al. Polarization sensitive optical coherence microscopy for brain imaging[J]. Optics Letters, 41, 2213-2216(2016).
[96] Patrice T, Zhiguo H, Gilles T et al. Capabilities of Gabor-domain optical coherence microscopy for the assessment of corneal disease[J]. Journal of Biomedical Optics, 24, 046002(2019).
[97] Liu L, Jia Y L, Takusagawa H L et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. JAMA Ophthalmology, 133, 1045-1052(2015).
[98] Virgili G, Menchini F, Casazza G et al. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy[J]. Cochrane Database of Systematic Reviews(2015).
[99] Chalam K V, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. Journal of Ophthalmic and Vision Research, 11, 84-92(2016).
[100] Petzold A, de Boer J F, Schippling S et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis[J]. The Lancet Neurology, 9, 921-932(2010).
[101] Makhlouf H, Perronet K, Dupuis G et al. Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination[J]. Optics Letters, 37, 1613-1615(2012).
[102] Grieve K, Ghoubay D, Georgeon C et al. Three-dimensional structure of the mammalian limbal stem cell niche[J]. Experimental Eye Research, 140, 75-84(2015).
[103] Liu X J, Liu T, Wen R et al. Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging[J]. Optics Letters, 40, 1370-1373(2015).
[104] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).
[106] Nie L M, Huang P, Li W T et al. Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy[J]. ACS Nano, 8, 12141-12150(2014).
[107] Wu Z Y, Duan F, Zhang J D et al. In vivo dual-scale photoacoustic surveillance and assessment of burn healing[J]. Biomedical Optics Express, 10, 3425-3433(2019).
[108] Leahy C, Radhakrishnan H, Bernucci M et al. Imaging and graphing of cortical vasculature using dynamically focused optical coherence microscopy angiography[J]. Journal of Biomedical Optics, 21, 020502(2016).
[109] Marchand P J, Bouwens A, Bolmont T et al. Statistical parametric mapping of stimuli evoked changes in total blood flow velocity in the mouse cortex obtained with extended-focus optical coherence microscopy[J]. Biomedical Optics Express, 8, 1-15(2017).
[110] Liu S Y, Mulligan J A, Adie S G. Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics[J]. Biomedical Optics Express, 9, 3137-3152(2018).
[112] Gildea D. The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review[J]. International Ophthalmology, 39, 2413-2433(2019).
Get Citation
Copy Citation Text
Han Tao, Qiu Jianrong, Wang Di, Meng Jia, Liu Zhiyi, Ding Zhihua. Optical Coherence Microscopy and Its Application[J]. Chinese Journal of Lasers, 2020, 47(2): 207004
Category: biomedical photonics and laser medicine
Received: Oct. 8, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: Zhihua Ding (zh_ding@zju.edu.cn)