Chinese Journal of Lasers, Volume. 48, Issue 22, 2202002(2021)
Numerical Simulation of Temperature Field and Stress Field in 316L/AISI304 Laser Cladding with Different Scanning Strategies
[1] Ju H, Xu P, Lin C et al. Test and temperature field of finite element simulation about the effect of scanning speed on 304 stainless layer’s properties by laser cladding[J]. Materials Research Innovations, 19, S8-9-S8-13(2015).
[2] Wang P F, Yang K, Chen M Z et al. Simulation and experimental research on the GH3536 molten pool laser cladding on inclined substrate[J]. Chinese Journal of Lasers, 48, 1002121(2021).
[3] Majumdar J D, Pinkerton A, Liu Z et al. Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel[J]. Applied Surface Science, 247, 373-377(2005).
[4] Guo W, Zhang Y P, Chai R X. Numerical simulation and experimental study of single-track laser cladding of 304 stainless steels[J]. Laser & Optoelectronics Progress, 56, 091401(2019).
[5] Duan X X, Gao S Y, Gu Y F et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 43, 0103004(2016).
[6] Li Y. The microstructure and pitting corrosion property of the 316L stainless steel welded joint[D](2015).
[7] Zhao H Y, Zhang H T, Xu C H et al. Temperature and stress fields of multi-track laser cladding[J]. Transactions of Nonferrous Metals Society of China, 19, s495-s501(2009).
[8] Liu P, Chen Z K, Jin Q M et al. Microstructure and corrosion behaviors of 316L coating fabricated by laser cladding[J]. Laser & Optoelectronics Progress, 57, 031402(2020).
[9] Zhao F F, Sun H L, Sun K. Microstructure & performance of 316L laser cladding on 45 steel substrate[J]. Laser & Infrared, 37, 712-714(2007).
[10] Bai Y, Wang Z H, Zuo J J et al. Fe-based composite coating prepared by laser cladding and its heat and corrosion resistance[J]. Chinese Journal of Lasers, 47, 1002001(2020).
[11] Jiang Q Y. The temperature field simulation during laser cladding process. Advanced Materials Research, 450/451, 235-238(2012).
[12] Wang L F, Sun Y X, Zhu G X et al. Optimization simulation of process parameters on the residual stress in 316L stainless steel by laser cladding[J]. Applied Laser, 39, 376-380(2019).
[13] Ma L, Zhang P, Meng L D et al. Finite element calculation of the residual stress and strain of coating during laser cladding process[J]. Journal of Academy of Armored Force Engineering, 25, 88-92(2011).
[14] Jiang Q Y. Simulation analysis on stress field of multi-track laser cladding[J]. Hot Working Technology, 40, 124-127, 139(2011).
[15] Wang X J, Yan Y L. Microstructure and properties of laser cladding 316L stainless steel coating assisted by magnetic field[J]. Laser & Optoelectronics Progress, 57, 231401(2020).
[16] Han H, Qi W J, Dang Y X et al. Effect of path set on laser cladding temperature field and stress and strain field of 304 stainless steel[J]. Hot Working Technology, 46, 148-152(2017).
[17] Xu H Z, Ge H H, Wang J F et al. Effects of process parameters on Cr element distribution of laser cladded 316L alloy coatings[J]. Chinese Journal of Lasers, 47, 1202004(2020).
[18] Wu X Y, Xu J X, Gao X S et al. Numerical simulation of thermal process and fluid flow field in laser-MIG hybrid weld pools[J]. Chinese Journal of Lasers, 46, 0902003(2019).
[19] Zhang J, Song J L, Li Y T et al. Numerical simulation of the temperature field in multi-layer powder-feeding laser cladding forming[J]. Applied Mechanics and Materials, 184/185, 1418-1423(2012).
[20] Zhang T G, Zhang Q, Yao B et al. Numerical simulation of temperature field and stress field of Ni-based laser cladding layer on TC4 surface[J]. Laser & Optoelectronics Progress, 58, 0314003(2021).
[21] Wu J J, Wang L Z, An X G. Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting[J]. Optik, 137, 65-78(2017).
[22] Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 12, 240-251(2016).
[24] Lai Y B, Zhang B H, Zhao J B et al. Calculation and experimental verification of optimal over-lapping ratio in laser metal direct manufacturing[J]. Transactions of the China Welding Institution, 37, 79-82, 132-133(2016).
[25] Ma P Z, Wu Y, Zhang P J et al. Solidification prediction of laser cladding 316L by the finite element simulation[J]. The International Journal of Advanced Manufacturing Technology, 103, 957-969(2019).
[26] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 15, 299-305(1984).
[27] Gao W Y, Chang C, Li G et al. Study on the laser cladding of FeCrNi coating[J]. Optik, 178, 950-957(2019).
[28] Li M Y, Han B, Cai C B et al. Numerical simulation on temperature and stress fields of laser cladded Ni-based coating[J]. Transactions of the China Welding Institution, 36, 25-28, 32, 114(2015).
[29] Jiang W, Hu F Y, Huang X R. The influence of craft parameter on the microstructure by CO2 laser cladding[J]. Surface Technology, 36, 57-58, 75(2007).
[30] Wu Z P. Study on crack and porosity control methods of laser cladding Ni60A alloy coating[D](2019).
Get Citation
Copy Citation Text
Yu Wu, Pengzhao Ma, Wenqian Bai, Jingqing Chen. Numerical Simulation of Temperature Field and Stress Field in 316L/AISI304 Laser Cladding with Different Scanning Strategies[J]. Chinese Journal of Lasers, 2021, 48(22): 2202002
Category: laser manufacturing
Received: Jan. 22, 2021
Accepted: May. 25, 2021
Published Online: Oct. 28, 2021
The Author Email: Chen Jingqing (simweld@163.com)