Opto-Electronic Engineering, Volume. 50, Issue 8, 230173(2023)
Far-field radiation manipulations of on-chip optical near-fields
[1] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).
[2] Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[3] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency Plasmons in metallic Mesostructures[J]. Phys Rev Lett, 76, 4773-4776(1996).
[4] Shi J J, Li Y, Kang M et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions[J]. Nano Lett, 19, 3838-3845(2019).
[5] Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nat Mater, 7, 442-453(2008).
[6] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 7, 435-441(2008).
[7] Zhang Y Q, Min C J, Dou X J et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light Sci Appl, 10, 59(2021).
[8] Chen J, Li T, Wang S M et al. Multiplexed holograms by surface Plasmon propagation and polarized scattering[J]. Nano Lett, 17, 5051-5055(2017).
[9] Sun J, Timurdogan E, Yaacobi A et al. Large-scale nanophotonic phased array[J]. Nature, 493, 195-199(2013).
[10] Jackson D R, Caloz C, Itoh T. Leaky-wave antennas[J]. Proc IEEE, 100, 2194-2206(2012).
[11] Monticone F, Alù A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies[J]. Proc IEEE, 103, 793-821(2015).
[12] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[13] Sun S L, He Q, Hao J M et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 11, 380(2019).
[14] Meng Y, Chen Y Z, Lu L H et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light Sci Appl, 10, 235(2021).
[15] Guan F X, Sun S L, Xiao S Y et al. Scatterings from surface Plasmons to propagating waves at Plasmonic discontinuities[J]. Sci Bull, 64, 802-807(2019).
[16] Guan F X, Sun S L, Ma S J et al. Transmission/reflection behaviors of surface Plasmons at an interface between two Plasmonic systems[J]. J Phys Condens Matter, 30, 114002(2018).
[17] Guan F X, Dong S H, He Q et al. Scatterings and wavefront manipulations of surface Plasmon polaritons[J]. Acta Phys Sin, 69, 157804(2020).
[18] Pan W K, Wang Z, Chen Y Z et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces[J]. Nanophotonics, 11, 2025-2036(2022).
[19] Lezec H J, Degiron A, Devaux E et al. Beaming light from a subwavelength aperture[J]. Science, 297, 820-822(2002).
[20] Yu N F, Fan J, Wang Q J et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nat Photonics, 2, 564-570(2008).
[21] Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nat Commun, 2, 283(2011).
[22] Martín-Moreno L, García-Vidal F J, Lezec H J et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys Rev Lett, 90, 167401(2003).
[23] Kim S, Lim Y, Kim H et al. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings[J]. Appl Phys Lett, 92, 013103(2008).
[24] Tang X M, Li L, Li T et al. Converting surface Plasmon to spatial Airy beam by graded grating on metal surface[J]. Opt Lett, 38, 1733-1735(2013).
[25] Hao F H, Wang R, Wang J. Design and characterization of a micron-focusing plasmonic device[J]. Opt Express, 18, 15741-15746(2010).
[26] Guan C Y, Ding M, Shi J H et al. Compact all-fiber plasmonic Airy-like beam generator[J]. Opt Lett, 39, 1113-1116(2014).
[27] Shi H F, Du C L, Luo X G. Focal length modulation based on a metallic slit surrounded with grooves in curved depths[J]. Appl Phys Lett, 91, 093111(2007).
[28] Kumar M S, Piao X, Koo S et al. Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves[J]. Opt Express, 18, 8800-8805(2010).
[29] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 11, 426-431(2012).
[30] Xu J J, Zhang H C, Zhang Q et al. Efficient conversion of surface-Plasmon-like modes to spatial radiated modes[J]. Appl Phys Lett, 106, 021102(2015).
[31] Kianinejad A, Chen Z N, Qiu C W. A single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain[J]. IEEE Trans Antennas Propag, 65, 681-687(2017).
[32] Wang D P, Wang G M, Cai T et al. Planar spoof surface Plasmon Polariton antenna by using transmissive phase gradient metasurface[J]. Ann Phys, 532, 2000008(2020).
[33] Zhu H, Yin X, Chen L et al. Directional beaming of light from a subwavelength metal slit with phase-gradient metasurfaces[J]. Sci Rep, 7, 12098(2017).
[34] Guo X X, Ding Y M, Chen X et al. Molding free-space light with guided wave–driven metasurfaces[J]. Sci Adv, 6, eabb4142(2020).
[35] Li T, Chen J, Zhu S N. Manipulating surface Plasmon propagation: from beam modulation to near-field holography[J]. Laser Optoelectron Prog, 54, 050002(2017).
[36] Li M, Hagberg M, Bengtsson J et al. Optical waveguide fan-out elements using dislocated gratings for both outcoupling and phase shifting[J]. IEEE Photonics Technol Lett, 8, 1199-1201(1996).
[37] Chen Y H, Huang L, Gan L et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light Sci Appl, 1, e26(2012).
[38] Chen Y H, Fu J X, Li Z Y. Surface wave holography on designing subwavelength metallic structures[J]. Opt Express, 19, 23908-23920(2011).
[39] Huang Z Q, Marks D L, Smith D R. Out-of-plane computer-generated multicolor waveguide holography[J]. Optica, 6, 119-124(2019).
[40] Zheng S, Zhao Z Y, Zhang W F. Versatile generation and manipulation of phase-structured light beams using on-chip subwavelength holographic surface gratings[J]. Nanophotonics, 12, 55-70(2023).
[41] Dolev I, Epstein I, Arie A. Surface-Plasmon holographic beam shaping[J]. Phys Rev Lett, 109, 203903(2012).
[42] Ding Y M, Chen X, Duan Y et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation[J]. ACS Photonics, 9, 398-404(2022).
[43] Fang B, Wang Z Z, Gao S L et al. Manipulating guided wave radiation with integrated geometric metasurface[J]. Nanophotonics, 11, 1923-1930(2022).
[44] Xi K L, Fang B, Ding L et al. Terahertz airy beam generated by Pancharatnam-Berry phases in guided wave-driven metasurfaces[J]. Opt Express, 30, 16699-16711(2022).
[45] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 27, 1141-1143(2002).
[46] Guo W L, Wang G M, Hou H S et al. Multi-functional coding metasurface for dual-band independent electromagnetic wave control[J]. Opt Express, 27, 19196-19211(2019).
[47] Chen S Q, Liu W W, Li Z C et al. Metasurface‐empowered optical multiplexing and multifunction[J]. Adv Mater, 32, 1805912(2020).
[48] Zhang L, Wu R Y, Bai G D et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Adv Funct Mater, 28, 1802205(2018).
[49] Wu P C, Zhu W M, Shen Z X et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Adv Opt Mater, 5, 1600938(2017).
[50] Spägele C, Tamagnone M, Kazakov D et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces[J]. Nat Commun, 12, 3787(2021).
[51] Zhou N, Zheng S, Cao X P et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 μm2 footprint[J]. Sci Adv, 5, eaau9593(2019).
[52] Ha Y L, Guo Y H, Pu M B et al. Monolithic-integrated multiplexed devices based on metasurface-driven guided waves[J]. Adv Theory Simul, 4, 2000239(2021).
[53] Ha Y L, Guo Y H, Pu M B et al. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures[J]. Opt Express, 28, 7943-7952(2020).
[54] Yang R, Yu Q Q, Pan Y W et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 49, 220177(2022).
[55] Liu Y, Shi Y Y, Wang Z J et al. On-chip integrated metasystem with inverse-design wavelength Demultiplexing for augmented reality[J]. ACS Photonics, 10, 1268-1274(2023).
[56] Fang B, Shu F Z, Wang Z Z et al. On-chip non-uniform geometric metasurface for multi-channel wavefront manipulations[J]. Opt Lett, 48, 3119-3122(2023).
[57] Shi Y Y, Wan C W, Dai C J et al. Augmented reality enabled by on-chip meta-holography multiplexing[J]. Laser Photonics Rev, 16, 2100638(2022).
[58] Yang R, Wan S, Shi Y Y et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics[J]. Laser Photonics Rev, 16, 2200127(2022).
[59] Shi Y Y, Wan C W, Dai C J et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection[J]. Optica, 9, 670-676(2022).
[60] Zhang C L, Min C J, Du L P et al. Perfect optical vortex enhanced surface Plasmon excitation for plasmonic structured illumination microscopy imaging[J]. Appl Phys Lett, 108, 201601(2016).
[61] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 91, 233901(2003).
[62] D’Ambrosio V, Nagali E, Walborn S P et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nat Commun, 3, 961(2012).
[63] Parigi V, D’Ambrosio V, Arnold C et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nat Commun, 6, 7706(2015).
[64] Li L, Li T, Tang X M et al. Plasmonic polarization generator in well-routed beaming[J]. Light Sci Appl, 4, e330(2015).
[65] Ji J T, Wang Z Z, Sun J C et al. Metasurface-enabled on-chip manipulation of higher-order Poincaré sphere beams[J]. Nano Lett, 23, 2750-2757(2023).
[66] Zhang Y B, Li Z C, Liu W W et al. On-chip multidimensional manipulation of far-field radiation with guided wave-driven metasurfaces[J]. Laser Photonics Rev, 17, 2300109(2023).
[67] Huang H Q, Overvig A C, Xu Y et al. Leaky-wave metasurfaces for integrated photonics[J]. Nat Nanotechnol, 18, 580-588(2023).
[68] Xu G Y, Overvig A, Kasahara Y et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas[J]. Nat Commun, 14, 4380(2023).
[69] Luo X G, Ishihara T. Surface Plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 84, 4780-4782(2004).
[70] Guo Y H, Pu M B, Zhao Z Y et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 3, 2022-2029(2016).
[71] Guo Y H, Pu M B, Li X et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction[J]. IEEE J Sel Top Quantum Electron, 24, 4700107(2018).
[72] Pan W K, Wang Z, Chen Y Z et al. Efficiently controlling near-field wavefronts via designer metasurfaces[J]. ACS Photonics, 10, 2423-2431(2023).
Get Citation
Copy Citation Text
Yizhen Chen, Weikang Pan, Xiangyu Jin, Qiong He, Lei Zhou, Shulin Sun. Far-field radiation manipulations of on-chip optical near-fields[J]. Opto-Electronic Engineering, 2023, 50(8): 230173
Category: Article
Received: Jul. 16, 2023
Accepted: Aug. 21, 2023
Published Online: Nov. 15, 2023
The Author Email: