Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1215002(2025)

Point Cloud Registration Algorithm Based on the Model of L1,P Sparse Constraint

Bo Yang*, Mingfeng Li, Ding Tan, and Guangyun Zhang
Author Affiliations
  • School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, Jiangsu , China
  • show less
    Figures & Tables(10)
    Point cloud registration framework based on L1,P sparse constraint model
    Convergence of the solution matrix varies with the number of iterations for different p values
    Visualization of registration result of each algorithm on the 3DMatch dataset
    Variation of feature matching recall (FMR) with distance threshold τ1
    Variation of registration recall with Gaussian noise standard deviation
    Visualization of registration results of each algorithm on the KITTI dataset
    • Table 1. Registration results of each algorithm on the 3DMatch dataset

      View table

      Table 1. Registration results of each algorithm on the 3DMatch dataset

      AlgorithmFeature descriptorRE /(°)TE /cmRMSE /cmAlgorithmFeature descriptorRE /(°)TE /cmRMSE /cm
      DCPFPFH8.4221.4018.22DCPFCGF8.4221.4018.22
      3DRegNet3.759.608.433DRegNet2.748.136.15
      PointNetLK8.0421.3015.35PointNetLK8.0421.3015.35
      SM6.3314.6213.35SM4.3411.329.63
      RANSAC5.1513.2410.58RANSAC4.8813.6310.23
      FGR3.9410.139.59FGR2.878.426.41
      ICP4.0311.8415.72ICP3.5011.4313.69
      L1,P2.517.225.08L1,P2.096.744.84
    • Table 2. Registration results of each algorithm on the KITTI dataset

      View table

      Table 2. Registration results of each algorithm on the KITTI dataset

      AlgorithmFeature descriptorRE /(°)TE /cmRMSE /m
      RANSACFPFH0.9319.660.31
      FGR0.8643.841.6317
      L1,P0.7110.580.192
      RANSACFCGF0.4818.000.22
      FGR0.3625.720.27
      L1,P0.458.080.15
    • Table 3. Registration result of traditional registration methods combined with L1,P

      View table

      Table 3. Registration result of traditional registration methods combined with L1,P

      AlgorithmFeature descriptorRE /(°)TE /cmRMSE /m
      RANSACFPFH2.432869.35941.1298
      FGR1.1975233.69412.4020
      SM105.4721845.583638.3274
      RANSAC+L1,P1.229749.30820.6453
      FGR+L1,P1.504345.54490.7264
      SM+L1,P1.505146.63940.7436
      RANSACFCGF1.262494.41191.0447
      FGR0.355043.93140.4270
      SM0.650115.20600.2980
      RANSAC+L1,P0.43079.13930.1417
      FGR+L1,P0.39478.43520.1847
      SM+L1,P0.35617.29260.1654
    • Table 4. Ablation experimental results on 3DMatch dataset

      View table

      Table 4. Ablation experimental results on 3DMatch dataset

      Feature descriptorSML1,PMCRMSE /cmRE /(°)TE /cm
      FPFH13.3486.32614.620
      23.56019.62322.808
      12.9026.24813.707
      12.7536.13212.059
      21.61017.81620.998
      5.0802.5107.220
      FCGF9.6254.33611.321
      28.1199.09116.067
      8.3083.70010.419
      8.1323.5209.087
      16.7317.90716.935
      4.8402.0906.740
    Tools

    Get Citation

    Copy Citation Text

    Bo Yang, Mingfeng Li, Ding Tan, Guangyun Zhang. Point Cloud Registration Algorithm Based on the Model of L1,P Sparse Constraint[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1215002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 14, 2024

    Accepted: Dec. 12, 2024

    Published Online: Jun. 9, 2025

    The Author Email: Bo Yang (921964134@qq.com)

    DOI:10.3788/LOP241845

    Topics