Acta Optica Sinica, Volume. 43, Issue 8, 0822003(2023)
Progress in CMOS-Compatible Fabrication Process of Dielectric Metasurfaces
[1] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).
[2] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).
[3] Qian C, Zheng B, Shen Y C et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 14, 383-390(2020).
[4] Hsu L, Ndao A, Kanté B. Broadband and linear polarization metasurface carpet cloak in the visible[J]. Optics Letters, 44, 2978-2981(2019).
[5] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[6] Cheng Y Z, Gong R Z, Zhao J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves[J]. Optical Materials, 62, 28-33(2016).
[7] Chen W T, Zhu A Y, Capasso F. Flat optics with dispersion-engineered metasurfaces[J]. Nature Reviews Materials, 5, 604-620(2020).
[8] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 1-9(2017).
[9] Zhang M, Lu Y Z, Peng J et al. Achromatic metalens compund lens[J]. Optical Instruments, 44, 37-43(2022).
[10] Yoon G, Kim K, Kim S U et al. Printable nanocomposite metalens for high-contrast near-infrared imaging[J]. ACS Nano, 15, 698-706(2021).
[11] Yoon G, Kim K, Huh D et al. Single-step manufacturing of hierarchical dielectric metalens in the visible[J]. Nature Communications, 11, 2268(2020).
[12] Jang J, Badloe T, Yang Y et al. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color[J]. ACS Nano, 14, 15317-15326(2020).
[13] Jung C, Yang Y, Jang J et al. Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability[J]. Nanophotonics, 10, 919-926(2020).
[14] Lee T, Kim J, Koirala I et al. Nearly perfect transmissive subtractive coloration through the spectral amplification of Mie scattering and lattice resonance[J]. ACS Applied Materials & Interfaces, 13, 26299-26307(2021).
[15] Stolt T, Kim J, Héron S et al. Backward phase-matched second-harmonic generation from stacked metasurfaces[J]. Physical Review Letters, 126, 033901(2021).
[16] Yang Y, Kim M, Mun J et al. Ultra-sharp circular dichroism induced by twisted layered C4 oligomers[J]. Advanced Theory and Simulations, 3, 1900229(2020).
[17] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[18] Kats M, Genevet P, Aoust G et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences, 109, 12364-12368(2012).
[19] Bohn J, Bucher T, Chong K E et al. Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces[J]. Nano Letters, 18, 3461-3465(2018).
[20] Lee K T, Taghinejad M, Yan J H et al. Electrically biased silicon metasurfaces with magnetic Mie resonance for tunable harmonic generation of light[J]. ACS Photonics, 6, 2663-2670(2019).
[21] Anzan-Uz-Zaman M, Song K, Lee D G et al. A novel approach to Fabry-Pérot-resonance-based lens and demonstrating deep-subwavelength imaging[J]. Scientific Reports, 10, 1-10(2020).
[22] Kamali S M, Arbabi E, Arbabi A et al. A review of dielectric optical metasurfaces for wavefront control[J]. Nanophotonics, 7, 1041-1068(2018).
[23] Huang L L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications[J]. Nanophotonics, 7, 1169-1190(2018).
[24] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 634, 1-72(2016).
[25] Holloway C L, Kuester E F, Gordon J A et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 54, 10-35(2012).
[26] Xue S Y, Hu H C, Xu Y N et al. Research progress and application of femtosecond laser-induced patterned growth of nanomaterials[J]. Chinese Journal of Lasers, 49, 1202001(2022).
[27] Dong Y, Zhong Q Z, Zheng Y J et al. Progress in wafer-level metasurface-based flat optics(invited)[J]. Acta Photonica Sinica, 50, 1024002(2021).
[28] Xu Z J, Dong Y, Tseng C K et al. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers[J]. Optics Express, 27, 26060-26069(2019).
[29] Nishijima Y, Balčytis A, Naganuma S et al. Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion[J]. Scientific Reports, 9, 8284(2019).
[30] Song W T, Liang X N, Li S Q et al. Large-scale Huygens’ metasurfaces for holographic 3D near-eye displays[J]. Laser & Photonics Reviews, 15, 2000538(2021).
[31] Ye M, Peng Y H, Yi Y. Silicon-rich silicon nitride thin films for subwavelength grating metalens[J]. Optical Materials Express, 9, 1200(2019).
[32] Fan Z B, Shao Z K, Xie M Y et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 10, 014005(2018).
[33] Ikeda K, Saperstein R E, Alic N et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides[J]. Optics Express, 16, 12987-12994(2008).
[34] Wu C L, Lin Y H, Cheng C H et al. Enriching Si quantum dots in a Si-rich SiNx matrix for strong χ(3) optical nonlinearity[J]. Journal of Materials Chemistry C, 4, 1405-1413(2016).
[35] Colburn S, Zhan A L, Majumdar A. Metasurface optics for full-color computational imaging[J]. Science Advances, 4, eaar2114(2018).
[36] Colburn S, Zhan A L, Majumdar A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 5, 825-831(2018).
[37] Miyata M, Nakajima M, Hashimoto T. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces[J]. ACS Photonics, 6, 1442-1450(2019).
[38] Zou X J, Zhang Y M, Lin R Y et al. Pixel-level Bayer-type colour router based on metasurfaces[J]. Nature Communications, 13, 1-7(2022).
[39] Lin Y D, Yong Z, Luo X S et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform[J]. Nature Communications, 13, 1-7(2022).
[40] Cuyvers S, Hermans A, Kiewiet M et al. Heterogeneous integration of Si photodiodes on silicon nitride for near-visible light detection[J]. Optics Letters, 47, 937-940(2022).
[41] Milica N, Thomas D, Manan R et al. Integrated visible-light liquid-crystal-based phase modulators[J]. Optics Express, 30, 13790-13801(2022).
[42] Liu J Q, Raja A S, Karpov M et al. Ultralow-power chip-based soliton microcombs for photonic integration[J]. Optica, 5, 1347-1353(2018).
[43] Siefke T, Kroker S, Pfeiffer K et al. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range[J]. Advanced Optical Materials, 4, 1780-1786(2016).
[44] Kim S Y. Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods[J]. Applied Optics, 35, 6703-6707(1996).
[45] Philipp G, Zou C J, Withawat W et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies[J]. ACS Nano, 10, 133-141(2016).
[46] Devlin R C, Khorasaninejad M, Chen W T et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 10473-10478(2016).
[47] Sun S, Yang W H, Zhang C et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 12, 2151-2159(2018).
[48] Checcucci S, Bottein T, Gurioli M et al. Multifunctional metasurfaces based on direct nanoimprint of titania Sol-gel coatings[J]. Advanced Optical Materials, 7, 1801406(2019).
[49] Einck V, Torfeh M, McClung A et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms[J]. ACS Photonics, 8, 2400-2409(2021).
[50] Gao Y S, Huang C, Hao C L et al. Lead halide perovskite nanostructures for dynamic color display[J]. ACS Nano, 12, 8847-8854(2018).
[51] Zhizhchenko A Y, Tonkaev P, Gets D et al. Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites[J]. Small, 16, 2000410(2020).
[52] Makarov S V, Milichko V, Ushakova E V et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces[J]. ACS Photonics, 4, 728-735(2017).
[53] Kessel A, Frydendahl C, Indukuri S R K C et al. Soft lithography for manufacturing scalable perovskite metasurfaces with enhanced emission and absorption[J]. Advanced Optical Materials, 8, 2001627(2020).
[54] Aftenieva O, Brunner J, Adnan M et al. Directional amplified photoluminescence through large-area perovskite-based metasurfaces[J]. ACS Nano, 17, 2399-2410(2023).
[55] Zhao Y, Han Q, Cheng Z H et al. Integrated graphene systems by laser irradiation for advanced devices[J]. Nano Today, 12, 14-30(2017).
[56] Chen H, Lu W B, Liu Z G et al. Microwave programmable graphene metasurface[J]. ACS Photonics, 7, 1425-1435(2020).
[57] Hayashi S, Tsunemitsu K, Terakawa M. Laser direct writing of graphene quantum dots inside a transparent polymer[J]. Nano Letters, 22, 775-782(2022).
[58] Tanaka T, Ishikawa A, Kawata S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure[J]. Applied Physics Letters, 88, 081107(2006).
[59] Huang Y J, Xie X Z, Li M N et al. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles[J]. Optics Express, 29, 4453-4463(2021).
[60] Shen D Z, Zou G S, Liu L et al. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer[J]. ACS Applied Materials & Interfaces, 10, 5404-5412(2018).
[61] Han S W, Yun W S, Woo W J et al. Interface defect engineering of a large-scale CVD-grown MoS2 monolayer via residual sodium at the SiO2/Si substrate[J]. Advanced Materials Interfaces, 8, 2100428(2021).
[62] An J N, Le T S D, Lim C H J et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Advanced Science, 5, 1800496(2018).
[63] Guo H, Yan J F, Li X et al. Patterned graphene oxide by spatially-shaped femtosecond laser[J]. Chinese Journal of Lasers, 48, 0202018(2021).
Get Citation
Copy Citation Text
Chi Zhang, Shumin Xiao. Progress in CMOS-Compatible Fabrication Process of Dielectric Metasurfaces[J]. Acta Optica Sinica, 2023, 43(8): 0822003
Category: Optical Design and Fabrication
Received: Jan. 21, 2023
Accepted: Mar. 21, 2023
Published Online: Apr. 6, 2023
The Author Email: Xiao Shumin (shumin.xiao@hit.edu.cn)