Chinese Journal of Lasers, Volume. 49, Issue 5, 0507103(2022)
Current Application and Progress of Laser Technology in Ophthalmology
[1] Palanker D. Evolution of concepts and technologies in ophthalmic laser therapy[J]. Annual Review of Vision Science, 2, 295-319(2016).
[2] Ge J, Wang N L[M]. Ophthalmology(2015).
[3] Zhang F, Lu H. Ophthalmic laser in China[J]. Chinese Journal of Laser Medicine & Surgery, 14, 54(2005).
[4] Zhang P F, Zhang T W, Song W Y et al. Review of advances in ophthalmic optical imaging technologies from several mouse retinal imaging methods[J]. Chinese Journal of Lasers, 47, 0207003(2020).
[5] Sun X G[M].
[6] Jalbert I, Stapleton F, Papas E et al. In vivo confocal microscopy of the human cornea[J]. The British Journal of Ophthalmology, 87, 225-236(2003).
[7] Vaddavalli P K, Garg P, Sharma S et al. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis[J]. Ophthalmology, 118, 29-35(2011).
[8] Tu E Y, Joslin C E, Sugar J et al. The relative value of confocal microscopy and superficial corneal scrapings in the diagnosis of acanthamoeba keratitis[J]. Cornea, 27, 764-772(2008).
[9] Kanavi M R, Javadi M, Yazdani S et al. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis[J]. Cornea, 26, 782-786(2007).
[10] Hwang J, Dermer H, Galor A. Can in vivo confocal microscopy differentiate between sub-types of dry eye disease? A review[J]. Clinical & Experimental Ophthalmology, 49, 373-387(2021).
[11] Tepelus T C, Chiu G B, Huang J Y et al. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 255, 1771-1778(2017).
[12] Erie J C. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study[J]. Transactions of the American Ophthalmological Society, 101, 293-333(2003).
[13] Misra S L, Craig J P, Patel D V et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus[J]. Investigative Ophthalmology & Visual Science, 56, 5060-5065(2015).
[14] Kheirkhah A, Rahimi Darabad R, Cruzat A et al. Corneal epithelial immune dendritic cell alterations in subtypes of dry eye disease: a pilot in vivo confocal microscopic study[J]. Investigative Ophthalmology & Visual Science, 56, 7179-7185(2015).
[15] Mastropasqua L, Lanzini M, Dua H S et al. In vivo evaluation of corneal nerves and epithelial healing after treatment with recombinant nerve growth factor for neurotrophic keratopathy[J]. American Journal of Ophthalmology, 217, 278-286(2020).
[16] Labbé A, Dupas B, Hamard P et al. In vivo confocal microscopy study of blebs after filtering surgery[J]. Ophthalmology, 112, 1979(2005).
[17] Amar N, Labbé A, Hamard P et al. Filtering blebs and aqueous pathway: an immunocytological and in vivo confocal microscopy study[J]. Ophthalmology, 115, 1154-1161(2008).
[18] Guthoff R, Klink T, Schlunck G et al. In vivo confocal microscopy of failing and functioning filtering blebs: results and clinical correlations[J]. Journal of Glaucoma, 15, 552-558(2006).
[19] Messmer E M, Zapp D M, Mackert M J et al. In vivo confocal microscopy of filtering blebs after trabeculectomy[J]. Archives of Ophthalmology, 124, 1095-1103(2006).
[20] Sterenczak K A, Winter K, Sperlich K et al. Morphological characterization of the human corneal epithelium by in vivo confocal laser scanning microscopy[J]. Quantitative Imaging in Medicine and Surgery, 11, 1737-1750(2021).
[21] Li S X, Wang T, Bian J et al. Precisely controlled side cut in femtosecond laser-assisted deep lamellar keratoplasty for advanced keratoconus[J]. Cornea, 35, 1289-1294(2016).
[22] Terasaki H, Sonoda S, Tomita M et al. Recent advances and clinical application of color scanning laser ophthalmoscope[J]. Journal of Clinical Medicine, 10, 718(2021).
[23] Tom E, Keane P A, Blazes M et al. Protecting data privacy in the age of AI-enabled ophthalmology[J]. Translational Vision Science & Technology, 9, 36(2020).
[24] Yaghoubi M, Moradi-Lakeh M, Mokhtari-Payam M et al. Confocal scan laser ophthalmoscope for diagnosing glaucoma: a systematic review and meta-analysis[J]. Asia-Pacific Journal of Ophthalmology, 4, 32-39(2015).
[25] Testoni P A. Optical coherence tomography[J]. The Scientific World Journal, 7, 87-108(2007).
[26] Sull A C, Vuong L N, Price L L et al. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness[J]. Retina, 30, 235-245(2010).
[27] Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).
[28] de Boer J F, Cense B, Park B H et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 28, 2067-2069(2003).
[29] Hajizadeh F[M]. Atlas of ocular optical coherence tomography(2018).
[30] Hormel T T, Hwang T S, Bailey S T et al. Artificial intelligence in OCT angiography[J]. Progress in Retinal and Eye Research, 85, 100965(2021).
[31] Liu Y, Yang Y L, Yue X. Optical coherence tomography angiography and its applications in ophthalmology[J]. Laser & Optoelectronics Progress, 57, 180002(2020).
[32] Murthy R K, Haji S, Sambhav K et al. Clinical applications of spectral domain optical coherence tomography in retinal diseases[J]. Biomedical Journal, 39, 107-120(2016).
[33] Ang M, Baskaran M, Werkmeister R M et al. Anterior segment optical coherence tomography[J]. Progress in Retinal and Eye Research, 66, 132-156(2018).
[34] Sridhar M S, Martin R. Anterior segment optical coherence tomography for evaluation of cornea and ocular surface[J]. Indian Journal of Ophthalmology, 66, 367-372(2018).
[35] Kirby M A, Pelivanov I, Song S Z et al. Optical coherence elastography in ophthalmology[J]. Journal of Biomedical Optics, 22, 121720(2017).
[36] Huang S C M, Chen H C J. Overview of laser refractive surgery[J]. Chang Gung Medical Journal, 31, 237-252(2008).
[37] Tran K, Ryce A[R]. Laser refractive surgery for vision correction: a review of clinical effectiveness and cost-effectiveness(2018).
[38] Sioufi K, Zheleznyak L, MacRae S et al. Femtosecond lasers in cornea & refractive surgery[J]. Experimental Eye Research, 205, 108477(2021).
[39] Xie L X, Gao H. Understanding the advantages and disadvantages of femtosecond laser comprehensive applications in ophthalmology[J]. Chinese Journal of Ophthalmology, 49, 289-291(2013).
[40] Ma Y T, Sui D D, Jia X G et al. Application of femtosecond laser in ophthalmic surgery[J]. Electronic Journal of Clinical Medical Literature, 7, 192(2020).
[41] Deshmukh R, Stevenson L J, Vajpayee R B. Laser-assisted corneal transplantation surgery[J]. Survey of Ophthalmology, 66, 826-837(2021).
[42] Chen Y Q, Hu D N, Xia Y et al. Comparison of femtosecond laser-assisted deep anterior lamellar keratoplasty and penetrating keratoplasty for keratoconus[J]. BMC ophthalmology, 15, 144(2015).
[43] Mehta J S, Parthasarthy A, Por Y M et al. Femtosecond laser-assisted endothelial keratoplasty: a laboratory model[J]. Cornea, 27, 706-712(2008).
[44] Moshirfar M, Thomson A C, Ronquillo Y[M]. Corneal endothelial transplantation(2021).
[45] Khalifa Y M, Monahan P M, Acharya N R. Ampiginous choroiditis following quadrivalent human papilloma virus vaccine[J]. The British Journal of Ophthalmology, 94, 137-139(2010).
[46] Alio J L, Abdelghany A A, Barraquer R et al. Femtosecond laser assisted deep anterior lamellar keratoplasty outcomes and healing patterns compared to manual technique[J]. BioMed Research International, 2015, 397891(2015).
[47] Yan H, Gong L Y, Huang W et al. Clinical outcomes of small incision lenticule extraction versus femtosecond laser-assisted LASIK for myopia: a meta-analysis[J]. International Journal of Ophthalmology, 10, 1436-1445(2017).
[48] Cai W T, Liu Q Y, Ren C D et al. Dry eye and corneal sensitivity after small incision lenticule extraction and femtosecond laser-assisted in situ keratomileusis: a meta-analysis[J]. International Journal of Ophthalmology, 10, 632-638(2017).
[49] Kobashi H, Kamiya K, Shimizu K. Dry eye after small incision lenticule extraction and femtosecond laser-assisted LASIK: meta-analysis[J]. Cornea, 36, 85-91(2017).
[50] Shen Z R, Zhu Y N, Song X H et al. Dry eye after small incision lenticule extraction (SMILE) versus femtosecond laser-assisted in situ keratomileusis (FS-LASIK) for myopia: a meta-analysis[J]. PLoS One, 11, e0168081(2016).
[51] Zhang Y J, Shen Q, Jia Y et al. Clinical outcomes of SMILE and FS-LASIK used to treat myopia: a meta-analysis[J]. Journal of Refractive Surgery, 32, 256-265(2016).
[52] Thompson V M, Seiler T, Durrie D S et al. Holmium: YAG laser thermokeratoplasty for hyperopia and astigmatism: an overview[J]. Refractive & Corneal Surgery, 9, S134-S137(1993).
[53] Marino G K, Santhiago M R, Wilson S E. Femtosecond lasers and corneal surgical procedures[J]. Asia-Pacific Journal of Ophthalmology, 6, 456-464(2017).
[54] Grewal D S, Schultz T, Basti S et al. Femtosecond laser-assisted cataract surgery: current status and future directions[J]. Survey of Ophthalmology, 61, 103-131(2016).
[55] Lin H Y, Chuang Y J, Lin P J. Surgical outcomes with high and low pulse energy femtosecond laser systems for cataract surgery[J]. Scientific Reports, 11, 9525(2021).
[56] Kanclerz P, Alio J L. The benefits and drawbacks of femtosecond laser-assisted cataract surgery[J]. European Journal of Ophthalmology, 31, 1021-1030(2021).
[57] Cui L J, Dong Y L, Dong D Q. Nd∶YAG laser capsulotomy for proliferative posterior capsular opacification on IOL eyes[J]. Recent Advances in Ophthalmology, 33, 1184-1185(2013).
[58] Karahan E, Er D, Kaynak S. An overview of Nd∶YAG laser capsulotomy[J]. Medical Hypothesis, Discovery & Innovation Ophthalmology Journal, 3, 45-50(2014).
[59] Saha B C, Kumari R, Sinha B P et al. Lasers in glaucoma: an overview[J]. International Ophthalmology, 41, 1111-1128(2021).
[60] Fabian I D, Johnson K P, Stacey A W et al. Focal laser treatment in addition to chemotherapy for retinoblastoma[J]. The Cochrane Database of Systematic Reviews, 6, CD012366(2017).
[61] Kawczyk-Krupka A, Bugaj A M, Latos W et al. Photodynamic therapy in treatment of cutaneous and choroidal melanoma[J]. Photodiagnosis and Photodynamic Therapy, 10, 503-509(2013).
[62] Eng V A, Leng T. Subthreshold laser therapy for macular oedema from branch retinal vein occlusion: focused review[J]. The British Journal of Ophthalmology, 104, 1184-1189(2020).
[63] van Rijssen T J, van Dijk E H C, Yzer S et al. Central serous chorioretinopathy: towards an evidence-based treatment guideline[J]. Progress in Retinal and Eye Research, 73, 100770(2019).
[64] Wilkinson C. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment[J]. The Cochrane Database of Systematic Reviews, CD003170(2005).
[65] Lang G E, Lang S J. Retinal vein occlusions[J]. Klinische Monatsblatter Fur Augenheilkunde, 235, 1297-1315(2018).
[66] Yadav N K, Jayadev C, Rajendran A et al. Recent developments in retinal lasers and delivery systems[J]. Indian Journal of Ophthalmology, 62, 50-54(2014).
[67] Adam M K, Weinstock B M, Kasi S K et al. Patient comfort with yellow (577 nm) vs. green (532 nm) laser panretinal photocoagulation for proliferative diabetic retinopathy[J]. Ophthalmology Retina, 2, 91-95(2018).
[68] Kim H D, Han J W, Ohn Y H et al. Functional evaluation using multifocal electroretinogram after selective retina therapy with a microsecond-pulsed laser[J]. Investigative Ophthalmology & Visual Science, 56, 122-131(2014).
[69] Chen Y, Li F T, Deng X et al. The efficiency of 810 nm diode laser photocoagulation for type1 retinopathy of prematurity[J]. Chinese Journal of Ophthalmology, 51, 814-817(2015).
[70] Subramanian M L, Reichel E. Current indications of transpupillary thermotherapy for the treatment of posterior segment diseases[J]. Current Opinion in Ophthalmology, 14, 155-158(2003).
[71] Jiang L, Xie B L. Application of transpupillary thermotherapy in ocular fundus diseases[J]. International Journal of Ophthalmology, 8, 1223-1225(2008).
[72] Wang J, Quan Y, Dalal R et al. Comparison of continuous-wave and micropulse modulation in retinal laser therapy[J]. Investigative Ophthalmology & Visual Science, 58, 4722-4732(2017).
[73] Li Z Y, Song Y P, Chen X et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochemistry and Biophysics, 73, 545-552(2015).
[74] Wei S Y, Yang C M. Transpupillary thermotherapy in the treatment of central serous chorioretinopathy[J]. Ophthalmic Surgery, Lasers & Imaging: the Official Journal of the International Society for Imaging in the Eye, 36, 412-415(2005).
[75] Newman D K. Photodynamic therapy: current role in the treatment of chorioretinal conditions[J]. Eye, 30, 202-210(2016).
[76] Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present and future[J]. Chemical Record, 17, 775-802(2017).
[77] Valmaggia C, Niederberger H. Photodynamic therapy in the treatment of chronic central serous chorioretinopathy[J]. Klinische Monatsblätter Für Augenheilkunde, 223, 372-375(2006).
[78] Gu Y. Laser medicine[J]. Physics, 39, 515-521(2010).
[79] Hamblin M R, Agrawal T, Sousa M[M]. Handbook of low-level laser therapy(2016).
[80] Hamblin M R, Carroll J D, de Freitas L F et al[M]. Low-level light therapy: photobiomodulation(2018).
[81] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, R37-R61(2013).
[82] Haas A F, Isseroff R R, Wheeland R G et al. Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes[J]. Journal of Investigative Dermatology, 94, 822-826(1990).
[83] Ji T D, Qiu H X, Gu Y. Progress in research on wound healing with low level light therapy[J]. Chinese Journal of Laser Medicine & Surgery, 27, 394-403(2018).
[84] Tam S Y, Tam V C W, Ramkumar S et al. Review on the cellular mechanisms of low-level laser therapy use in oncology[J]. Frontiers in Oncology, 10, 1255(2020).
[85] Li Y Q, Qiu H X, Gu Y. Research progress in the treatment of osteoporosis with weak laser[J]. Chinese Journal of Laser Medicine & Surgery, 27, 118(2018).
[86] Rojas J C, Gonzalez-Lima F. Low-level light therapy of the eye and brain[J]. Eye and Brain, 3, 49-67(2011).
[87] Assia E, Rosner M, Belkin M et al. Temporal parameters of low energy laser irradiation for optimal delay of post-traumatic degeneration of rat optic nerve[J]. Brain Research, 476, 205-212(1989).
[88] Geneva I I. Photobiomodulation for the treatment of retinal diseases: a review[J]. International Journal of Ophthalmology, 9, 145-152(2016).
[89] Yan W H[D]. Injurious effect of low level laser irradiation and therapeutic effect of MK-801 in retinal laser injury(2006).
[90] Xiong F[D]. Study on choroidal thickness in myopia children treated by orthokeratology and low-intensity laser irradiation therapy(2020).
[91] Chang D F, Mamalis N, Werner L. Precision pulse capsulotomy: preclinical safety and performance of a new capsulotomy technology[J]. Ophthalmology, 123, 255-264(2016).
[92] Reddy J C, Devta S, Vupparaboina K K et al. Early results of circularity and centration of capsulotomy prepared by three different methods[J]. International Journal of Ophthalmology, 14, 76-82(2021).
[93] Naveena R L, Nivean M, Nishanth M et al. Capsulorhexis flap dimensions between manual continuous curvilinear capsulorhexis and zepto-assisted capsulotomy: a prospective study[J]. TNOA Journal of Ophthalmic Science and Research, 57, 275(2019).
[94] Abbas A A, Bu J J, Chung J et al. Recent developments in anterior capsulotomy for cataract surgery[J]. Current Opinion in Ophthalmology, 33, 47-52(2022).
[95] Daya S, Chee S P, Ti S G et al. Comparison of anterior capsulotomy techniques: continuous curvilinear capsulorhexis, femtosecond laser-assisted capsulotomy and selective laser capsulotomy[J]. The British Journal of Ophthalmology, 104, 437-442(2020).
[96] de Crom R M P C, Slangen C G M M, Kujovic-Aleksov S et al. Micropulse trans-scleral cyclophotocoagulation in patients with glaucoma: 1- and 2-year treatment outcomes[J]. Journal of Glaucoma, 29, 794-798(2020).
[97] Al Habash A, AlAhmadi A S. Outcome of MicroPulse® transscleral photocoagulation in different types of glaucoma[J]. Clinical Ophthalmology, 13, 2353-2360(2019).
[98] Sacks Z S, Dobkin-Bekman M, Geffen N et al. Non-contact direct selective laser trabeculoplasty: light propagation analysis[J]. Biomedical Optics Express, 11, 2889-2904(2020).
[99] Geffen N, Ofir S, Belkin A et al. Transscleral selective laser trabeculoplasty without a gonioscopy lens[J]. Journal of Glaucoma, 26, 201-207(2017).
[100] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).
[101] Pawley J B[M]. Handbook of biological confocal microscopy(2006).
[102] Gibson E A, Masihzadeh O, Lei T C et al. Multiphoton microscopy for ophthalmic imaging[J]. Journal of Ophthalmology, 2011, 870879(2011).
[103] Ávila F J, Gambín A, Artal P et al. In vivo two-photon microscopy of the human eye[J]. Scientific Reports, 9, 10121(2019).
[104] Lecoq J, Orlova N, Grewe B F. Wide. fast. deep: recent advances in multiphoton microscopy of in vivo neuronal activity[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 39, 9042-9052(2019).
[105] Yin C B, Wei L P, Kose K et al. Real-time video mosaicking to guide handheld in vivo microscopy[J]. Journal of Biophotonics, 13, e202000048(2020).
[106] Wahl D J, Ju M J, Jian Y F et al. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence[J]. Biomedical Optics Express, 10, 4859-4873(2019).
[107] Maeda N. Wavefront technology in ophthalmology[J]. Current Opinion in Ophthalmology, 12, 294-299(2001).
[108] Ford J, Werner L, Mamalis N. Adjustable intraocular lens power technology[J]. Journal of Cataract & Refractive Surgery, 40, 1205-1223(2014).
[109] Liu Y, Yang Y L, Yue X. Laser exposure safety analysis for adaptive optics retinal imaging system[J]. Acta Optica Sinica, 40, 1014003(2020).
Get Citation
Copy Citation Text
Li Li, Yue Zhang, Mengxi Li, Zhen Zhang, Yufei Dang, Yanlong Yang. Current Application and Progress of Laser Technology in Ophthalmology[J]. Chinese Journal of Lasers, 2022, 49(5): 0507103
Received: Nov. 30, 2021
Accepted: Jan. 11, 2022
Published Online: Mar. 9, 2022
The Author Email: Yang Yanlong (yyl@optac.cn)