Chinese Journal of Lasers, Volume. 51, Issue 2, 0210001(2024)

Simulation of Charge Collection Efficiency Optimization for EBCMOS with Uniform and Gradient Doping

Gangcheng Jiao1, De Song1,2、*, Lei Yan1, Chao Xiao1, Ye Li1,2, and Weijun Chen1,2、**
Author Affiliations
  • 1Science and Technology on Low-Light-Level Night Version Laboratory, Xi an 710065, Shaanxi, China
  • 2College of Physics, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    References(25)

    [1] Wang W, Li Y, Chen W J et al. Simulation of the electrostatic distribution in the proximity focusing structure of an EBCMOS[J]. IEEE Photonics Journal, 12, 6901210(2020).

    [2] Aebi V W, Costello K A, Arcuni P W et al. EBAPS: next generation, low power, digital night vision[C], 1-10(2005).

    [3] Yan Y Y, Qian Y S, Zhang J Z et al. Design of spectral response test system for electron bombardment active pixel sensor[J]. Laser & Optoelectronics Progress, 59, 1304001(2022).

    [4] Barbier R, Depasse P, Baudot J et al. First results from the development of a new generation of hybrid photon detector: EBCMOS[M]. Barbier R, Depasse P, Baudot J, et al. First results from the development of a new generation of hybrid photon detector: EBCMOS[M]∥Barone M, Gaddi A, Leroy C, et al. Astroparticle, particle and space physics, detectors and medical physics applications, 23-27(2008).

    [6] Xu Z H. Simulation study of EBCMOS charge collection efficiency[J]. Journal of Sensor Technology and Application, 187-192(2022).

    [7] Dominjon A, Chabanat E, Depasse P et al. LUSIPHER large-scale ultra-fast single photo-electron tracker[C], 1527-1531(2010).

    [8] Barbier R, Cajgfinger T, Calabria P et al. A single-photon sensitive ebCMOS camera: the LUSIPHER prototype[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 648, 266-274(2011).

    [9] Hirvonen L M, Suhling K. Photon counting imaging with an electron-bombarded pixel image sensor[J]. Sensors, 16, 617(2016).

    [10] Zhang H Z, Mu Y N, Wang L K et al. Impact of passivation layer on photoelectron energy loss in EBCMOS low-light-level imaging device: a simulation and experimental study[J]. Chinese Journal of Vacuum Science and Technology, 37, 991-996(2017).

    [11] Liu H L, Wang X, Tian J S et al. High resolution electron bombareded complementary metal oxide semiconductor sensor for ultraviolet detection[J]. Acta Physica Sinica, 67, 014209(2018).

    [12] Bai J Z, Bai Y L, Hou X et al. The analysis of electron scattering among multiplying layer in EBAPS using optimized Monte Carlo method[J]. Modern Physics Letters B, 34, 2050398(2020).

    [13] Yan L, Shi F, Cheng Y J et al. Performance of low-light-level night vision device affected by backscattered electron from ion barrier film[J]. Proceedings of SPIE, 8419, 84192Y(2012).

    [14] Qiao K, Wang S K, Cheng H C et al. Experimental study on the electron sensitivity of BCMOS sensor influenced by surface passivation film[J]. Infrared and Laser Engineering, 49, 0418002(2020).

    [15] Wu Z Q. Scattering of low energy electrons in solids[J]. Journal of Chinese Electron Microscopy Society, 1, 34-43(1982).

    [16] Browning R, Li T Z, Chui B et al. Empirical forms for the electron/atom elastic scattering cross sections from 0.1 to 30 keV[J]. Journal of Applied Physics, 76, 2016-2022(1994).

    [17] Joy D C, Luo S. An empirical stopping power relationship for low-energy electrons[J]. Scanning, 11, 176-180(1989).

    [18] Fiebiger J R, Muller R S. Pair-production energies in silicon and germanium bombarded with low-energy electrons[J]. Journal of Applied Physics, 43, 3202-3207(1972).

    [19] Hirvonen L M, Petrášek Z, Suhling K. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 787, 1-5(2015).

    [20] Song D, Shi F, Li Y. Simulation of charge collection efficiency for EBAPS with uniformly doped substrate[J]. Infrared and Laser Engineering, 45, 0203002(2016).

    [21] Zhang Y J, Niu J, Zhao J et al. Effect of exponential-doping structure on quantum yield of transmission-mode GaAs photocathodes[J]. Acta Physica Sinica, 60, 067301(2011).

    [22] Zou J J, Chang B K, Yang Z. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes[J]. Acta Physica Sinica, 56, 2992-2997(2007).

    [23] Tian J F, Song D, Chen W J et al. Influence of doping distribution in electron multiplier surface layer on charge collection efficiency of EBCMOS[J]. Semiconductor Optoelectronics, 42, 45-51, 105(2021).

    [24] Song Y Y, Song D, Li Y et al. Influence of passivation layer and P-type substrate structure optimization on charge collection efficiency of EBAPS[J]. Chinese Journal of Lasers, 18, 1803001(2023).

    [25] Wang W, Li Y, Chen W J et al. Influence of proximity focusing structure and electric field distribution on electron trajectory in the EBCMOS[J]. Chinese Optics, 13, 713-721(2020).

    Tools

    Get Citation

    Copy Citation Text

    Gangcheng Jiao, De Song, Lei Yan, Chao Xiao, Ye Li, Weijun Chen. Simulation of Charge Collection Efficiency Optimization for EBCMOS with Uniform and Gradient Doping[J]. Chinese Journal of Lasers, 2024, 51(2): 0210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: May. 4, 2023

    Accepted: May. 22, 2023

    Published Online: Jan. 4, 2024

    The Author Email: Song De (songde614@163.com), Chen Weijun (chenweijun@cust.edu.cn)

    DOI:10.3788/CJL230794

    CSTR:32183.14.CJL230794

    Topics