Acta Optica Sinica, Volume. 41, Issue 1, 0130003(2021)

Research of High Sensitivity Cavity Ring-Down Spectroscopy Technology and Its Application

Wenqing Liu1、*, Xingping Wang1,2, Guosheng Ma1,3, Ying Liu1,3, Zhihao Zhao4, Xiang Li1, Hao Deng1, Bing Chen1、**, and Ruifeng Kan1
Author Affiliations
  • 1Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
  • 3School of Science Island, University of Science and Technology of China, Hefei, Anhui 230031, China
  • 4College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110000, China
  • show less
    References(133)

    [2] Sastri A R, Christian J R, Achterberg E P et al. Perspectives on in situ sensors for ocean acidification research[J]. Frontiers in Marine Science, 6, 653(2019).

    [3] Li S, Lucey P G, Milliken R E et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 8907-8912(2018).

    [4] Wandt J, Lee J. Arrigan D W M, et al. Ionophore-assisted electrochemistry of neutral molecules: oxidation of hydrogen in an ionic liquid electrolyte[J]. The Journal of Physical Chemistry Letters, 10, 6910-6914(2019).

    [5] Qi J. Preparation of gas sensitive fabrics through in situ polymerization of aniline and its gas sensing property[D]. Shenyang: Northeastern University, 1-12(2013).

    [6] Sun J[J]. Review of research progress and pretreatment methods of gas chromatography-mass spectrometry technology Modern Chemical Research, 2017, 4-5.

    [12] Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 92, 403-408(2008).

    [13] Butler T J, Miller J L. Orr-Ewing A J. Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction[J]. The Journal of Chemical Physics, 126, 174302(2007).

    [17] Liu G L. Absorption spectral line parameters of water and nitrous oxide from cavity ring-down spectroscopy[D]. Hefei: University of Science and Technology of China, 1-14(2019).

    [19] Crosson E R, Ricci K N, Richman B A et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/ 12C for carbon dioxide in human breath[J]. Analytical Chemistry, 74, 2003-2007(2002).

    [21] Stamyr K, Vaittinen O, Jaakola J et al. Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy[J]. Biomarkers, 14, 285-291(2009).

    [23] Rao G N, Karpf A. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser[J]. Applied Optics, 49, 4906-4914(2010).

    [27] Campargue A, Kassi S, Mondelain D et al. Detection and analysis of three highly excited vibrational bands of 16O3 by CW-CRDS near the dissociation threshold[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 152, 84-93(2015).

    [29] Kassi S, Stoltmann T, Casado M et al. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm[J]. The Journal of Chemical Physics, 148, 054201(2018).

    [30] Burkart J, Kassi S. Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy[J]. Applied Physics B, 119, 97-109(2015).

    [35] Curtis E A, Barwood G P, Huang G et al. Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection[J]. Journal of the Optical Society of America B, 34, 950-958(2017).

    [41] Cygan A, Lisak D, Masłowski P et al. Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer[J]. The Review of Scientific Instruments, 82, 063107(2011).

    [42] Ehlers P, Johansson A C, Silander I et al. Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy[J]. Journal of the Optical Society of America B, 31, 2938-2945(2014).

    [43] Silander I, Hausmaninger T, Ma W G et al. Doppler-broadened mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometry based on an optical parametric oscillator for trace gas detection[J]. Optics Letters, 40, 439-442(2015).

    [44] Fleurbaey H, Yi H M, Adkins E M et al. Cavity ring-down spectroscopy of CO2 near λ=2.06 μm: accurate transition intensities for the Orbiting Carbon Observatory-2 (OCO-2) “strong band”[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 252, 107104(2020).

    [45] Long D, Reed Z, Fleisher A et al. 47(5): e2019GL086344(2020).

    [47] Yi H M, Liu Q N, Gameson L et al. High-accuracy 12C 16O2 line intensities in the 2 μm wavelength region measured by frequency-stabilized cavity ring-down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 206, 367-377(2018).

    [48] Fleisher A J, Long D A, Yi H M et al. Accurate optical measurements of stable and radioactive carbon isotopologues of CO2. [C]∥Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL), Singapore. Washington, D.C.: OSA, EW3A, 2(2018).

    [50] Reed Z D, Long D A, Fleurbaey H et al. Comb-locked cavity-ringdown spectroscopy for molecular transition frequency measurements below 1×10 -12 relative uncertainty. [C]∥Conference on Lasers and Electro-Optics, Washington, D.C. Washington, D.C.: OSA, SM1M, 4(2020).

    [51] Long D A, Fleisher A J, Liu Q et al. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region[J]. Optics Letters, 41, 1612-1615(2016).

    [52] Fleisher A J, Long D A, Liu Q N et al. Towards the robust trace detection of radiocarbon via linear absorption spectroscopy. [C]∥Conference on Lasers and Electro-Optics, San Jose, California. Washington, D.C.: OSA, SF1M, 2(2017).

    [53] Fleisher A J, Long D A, Liu Q N et al. Optical measurement of radiocarbon below unity fraction modern by linear absorption spectroscopy[J]. The Journal of Physical Chemistry Letters, 8, 4550-4556(2017).

    [54] Dai D X, Sun F G, Kang L et al[J]. A cavity ring down spectroscopic setup for high Rep.rate real time measurment Chinese Journal of Chemical Physics, 1997, 481-486.

    [55] Zhao D F. Spectroscopy study of several free radicals by cavity ringdown[D]. Hefei: University of Science and Technology of China, 1-21(2009).

    [56] Pan H, Cheng C F, Sun Y R et al. Laser-locked, continuously tunable high resolution cavity ring-down spectrometer[J]. The Review of Scientific Instruments, 82, 103110(2011).

    [58] Guo R M, Teng J H, Cao K et al. Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters[J]. Optics Express, 27, 31850-31863(2019).

    [63] Zhao G. Design and optimization of ultrasensitive noise-immune cavity enhanced optical heterodyne molecular spectroscopy[D]. Taiyuan: Shanxi University, 91-99(2018).

    [66] Jia M Y. Investigation of trace gas detection based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy[D]. Taiyuan: Shanxi University, 31-41(2018).

    [71] Zhou S, Han Y L, Li B C. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection[J]. Applied Physics B, 124, 1-8(2018).

    [79] Li Z Y, Hu R Z, Xie P H et al. Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique[J]. Atmospheric Measurement Techniques, 12, 3223-3236(2019).

    [91] Li Z Y, Hu R Z, Xie P H et al[J]. CEAS for measurements of atmospheric N2O5 in Beijing, China. Science of the Total Environment, 613/614, 131-139(2018).

    [97] Astel A, Walna B. Szczepaniak I K K, et al. Application of chemometry to the comparison of atmospheric precipitation pollution profiles in urban and ecologically protected areas[J]. Chemia Analityczna, 51, 377-389(2006).

    [98] Yang X, Lan Y, Meng J et al. Effects of maize stover and its derived biochar on greenhouse gases emissions and C-budget of brown earth in Northeast China[J]. Environmental Science and Pollution Research, 24, 8200-8209(2017).

    [104] Morgan E J. Lavri J V, Seifert T, et al. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory[J]. Atmospheric Measurement Techniques Discussions, 8, 1511-1558(2015).

    [108] Zhang G Q, Yao T D, Piao S L et al. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades[J]. Geophysical Research Letters, 44, 252-260(2017).

    [109] Farinotti D, Longuevergne L, Moholdt G et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 8, 716-722(2015).

    [112] Wang G X, Qian J, Cheng G D. Current situation and prospect of the ecological hydrology[J]. Advance in Earth Sciences, 16, 314-323(2001).

    [113] Zhang Y C, Sun H Y, Shen Y J et al. Application of hydrogen and oxygen stable isotopes technique in the water depletion of ecosystems[J]. Scientia Geographica Sinica, 32, 289-293(2012).

    [114] Cui J P, Tian L D, Liu Q et al. Signal of Typhoon Phailin from Indian Ocean captured by atmospheric water vapor isotope, central Tibetan Plateau[J]. Chinese Science Bulletin, 59, 3526-3532(2014).

    [116] An W L, Hou S G, Zhang W B et al. Corrigendum: possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records[J]. Scientific Reports, 7, 46863(2017).

    [117] Liu J, Liu W, An Z et al. Different hydrogen isotope fractionations during lipid formation in higher plants: implications for paleohydrology reconstruction at a global scale[J]. Scientific Reports, 6, 19711(2016).

    [120] Gupta P, Noone D, Galewsky J et al. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology[J]. Rapid Communications in Mass Spectrometry, 23, 2534-2542(2009).

    [122] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 107, 486-513(2007).

    [123] Valentine D L, Kastner M, Wardlaw G D et al. Biogeochemical investigations of marine methane seeps, Hydrate Ridge, Oregon[J]. Journal of Geophysical Research: Biogeosciences, 110, G02005(2005).

    [128] McCartt A D, Ognibene T, Bench G et al. Measurements of carbon-14 with cavity ring-down spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B, 361, 277-280(2015).

    Tools

    Get Citation

    Copy Citation Text

    Wenqing Liu, Xingping Wang, Guosheng Ma, Ying Liu, Zhihao Zhao, Xiang Li, Hao Deng, Bing Chen, Ruifeng Kan. Research of High Sensitivity Cavity Ring-Down Spectroscopy Technology and Its Application[J]. Acta Optica Sinica, 2021, 41(1): 0130003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Nov. 19, 2020

    Accepted: Dec. 8, 2020

    Published Online: Feb. 23, 2021

    The Author Email: Liu Wenqing (wqliu@aiofm.ac.cn), Chen Bing (bchen@aiofm.ac.cn)

    DOI:10.3788/AOS202141.0130003

    Topics